Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Methods ; 170: 105855, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004552

RESUMEN

Transcriptomic analysis is an OMICs technology that is becoming indispensable to understand and get a complete picture of cell functioning and adaptation to the environmental cues the cell is continuously receiving. Among the techniques available to perform transcriptomics, RNA-seq is becoming the method of choice. The quality of the RNA used for the generation of cDNA libraries and subsequent sequencing is crucial for the success of the process. Good RNA-seq performance is often limited by problems such as low RNA yield and/or integrity, RNA stability, and contamination with DNA, salts or chemicals. RNA isolation from fungi usually faces these problems and is particularly sensitive to degradation due to the high RNase activity content present in many species. Here we describe the development of a robust, highly reproducible and simple RNA purification method for filamentous fungi, which combines various strategies to get fully DNA-free RNA samples of high purity and integrity without the need to use a DNase I digestion step. The obtained RNA samples complied with all required standards to be used for RNA-seq and showed an excellent performance when subjected to Illumina-HiSeq 2500.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Mucorales/genética , ARN de Hongos/aislamiento & purificación , RNA-Seq/métodos , Mucorales/aislamiento & purificación , ARN de Hongos/química
2.
Microorganisms ; 8(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878282

RESUMEN

Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. Fusarium oxisporum (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a Fusarium. Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the Tpi gene from F. oxysporum was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for Km and Vmax using the substrate GAP were 0.47 ± 0.1 mM, and 5331 µmol min-1 mg-1, respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...