Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 126(36): 6985-6996, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049076

RESUMEN

It is well-known that the thermodynamic, kinetic and structural properties of fluids, and in particular of water and its solutions, can be drastically affected in nanospaces. A possible consequence of nanoscale confinement of a solution is the partial segregation of its components. Thereby, confinement in nanoporous materials (NPM) has been proposed as a means for the separation of mixtures. In fact, separation science can take great advantage of NPM due to the tunability of their properties as a function of nanostructure, morphology, pore size, and surface chemistry. Alcohol-water mixtures are in this context among the most relevant systems. However, a quantitative thermodynamic description allowing for the prediction of the segregation capabilities as a function of the material-solution characteristics is missing. In the present study we attempt to fill this vacancy, by contributing a thermodynamic treatment for the calculation of the partition coefficient in confinement. Combining the multilayer adsorption model for binary mixtures with the Young equation, we conclude that the liquid-vapor surface tension and the contact angle of the pure substances can be used to predict the separation ability of a particular material for a given mixture to a semiquantitative extent. Moreover, we develop a Kelvin-type equation that relates the partition coefficient to the radius of the pore, the contact angle, and the liquid-vapor surface tensions of the constituents. To assess the validity of our thermodynamic formulation, coarse grained molecular dynamics simulations were performed on models of alcohol-water mixtures confined in cylindrical pores. To this end, a coarse-grained amphiphilic molecule was parametrized to be used in conjunction with the mW potential for water. This amphiphilic model reproduces some of the properties of methanol such as enthalpy of vaporization and liquid-vapor surface tension, and the minimum of the excess enthalpy for the aqueous solution. The partition coefficient turns out to be highly dependent on the molar fraction, on the interaction between the components and the confining matrix, and on the radius of the pore. A remarkable agreement between the theory and the simulations is found for pores of radius larger than 15 Å.

2.
J Colloid Interface Sci ; 623: 870-882, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35636295

RESUMEN

A better molecular-level understanding of Li+ diffusion through ceramic/polymer interfaces is key to design high-performance composite solid-state electrolytes for all-solid-state batteries. By considering as a case study a composite electrolyte constituted by Li+ conductive Ga3+ doped-Li7La3Zr2O12 (LLZO) garnet fillers embedded within a poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl) imide polymer matrix (PEO(LiTFSI)), we investigate Li+ interfacial dynamics at conditions of high polymer confinement, with large filler particles in a fully amorphous polymer phase. Such confinement scenario is aimed to capture the conditions near the percolation threshold, at which conductivity enhancement is often reported. Using molecular dynamics simulations combined with the generalized shadow hybrid Monte Carlo method and umbrella sampling calculations, we explain why the hopping towards the polymer phase of the Li+ sitting on the LLZO surface is thermodynamically hindered, while hopping of Li+ from the polymer to the LLZO is kinetically slowed-down by rigidified polymer near the interface. In addition, we demonstrate how the overlap of LLZO-bound polymer chains at high confinement leads to a decrease of Li+ diffusivity within the interstitial space. We put forward that these insights are relevant to interpret the variation of ionic conductivity as a function of volume fraction and filler particle sizes also below the glass transition temperature of the polymer, at the typical operating conditions of lithium ion batteries.

3.
Ultramicroscopy ; 230: 113369, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34399101

RESUMEN

The increasing interest in lithium-oxygen batteries (LOB), having the highest theoretical energy densities among the advanced lithium batteries, has triggered the search for in-situ characterization techniques, including Electrochemical Atomic Force Microscopy (EC-AFM). In this work we addressed the characterization of the formation and decomposition of lithium peroxide (Li2O2) on a carbon cathode using a modified AFM technique, called Flow Electrochemical Atomic Force Microscopy (FE-AFM), where an oxygen-saturated solution of the non-aqueous lithium electrolyte is circulated through a liquid AFM cell. This novel technique does not require keeping the AFM equipment inside a glove-box, and it allows performing a number of experiments using the same substrate with different electrolytes without disassembling the cell. We study the morphology of Li2O2 on graphite carbon using lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in dimethyl sulphoxide (DMSO) as electrolyte under different operational conditions, in order to compare our results with those reported using other electrolytes and in-situ and ex-situ EC-AFM.

4.
Phys Chem Chem Phys ; 20(25): 16924-16931, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29774325

RESUMEN

There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...