Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 9(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34946027

RESUMEN

Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by Pseudomonas aeruginosa to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration. We analyzed their ability to inhibit QS-regulated virulence factors such as swarming, pyocyanin production, and secretion of the ExoU toxin via the type III secretion system (T3SS). Five of the seven extracts with the best anti-pathogenic activity reduced ExoU secretion, and the extracts of Diphysa americana and Hibiscus sabdariffa were identified as the most active. Therefore, the abscess/necrosis model allows identification of plant extracts that have the capacity to reduce pathogenicity of P. aeruginosa. Furthermore, we evaluated the activity of the plant extracts on Chromobacterium violaceum. T3SS (ΔescU) and QS (ΔcviI) mutant strains were assessed in both the abscess/necrosis and sepsis models. Only the ΔescU strain had lower pathogenicity in the animal models, although no activity of plant extracts was observed. These results demonstrate differences between the anti-virulence activity recorded in vitro and pathogenicity in vivo and between the roles of QS and T3S systems as virulence determinants.

2.
J Med Food ; 24(9): 934-943, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33751918

RESUMEN

Hibiscus sabdariffa L. (Hs) calyxes, rich in organic acids, are included in diets in different countries. In recent years, some phytochemicals have been shown to reduce bacterial virulence at sublethal concentrations by interfering with quorum sensing (QS) systems. Therefore, in this study the antivirulence properties of Hs calyxes and two γ-lactones (hibiscus acid [HA] and its methyl ester) in Pseudomonas aeruginosa were analyzed. Acetone and methanol extracts of Hs showed anti-QS activity by inhibiting violacein production (60% to 80% with 250 µg/mL). In molecular docking analysis, the γ-lactones registered a good binding score, which suggests strong interaction with the active site of LasR protein. To verify their effect in vitro, they were isolated from Hs and evaluated in six QS-regulated phenotypes, as well as in ExoU toxin that is released by the type III secretion system (T3SS). At 500 µg/mL they reduced alkaline protease (29-52%) and elastase (15-37%) activity, biofilm formation (∼75%), and swarming (50%), but there was no effect on pyocyanin production, hemolytic activity, or type III secretion. In a mouse abscess/necrosis model, HA at sublethal concentrations (15 and 31.2 µg/mL) affected infection establishment and prevented damage and systemic spread. In conclusion, HA is the first molecule identified with antivirulence properties in Hs with the potential to prevent infections caused by P. aeruginosa.


Asunto(s)
Hibiscus , Pseudomonas aeruginosa , Animales , Antibacterianos , Biopelículas , Citratos , Ratones , Simulación del Acoplamiento Molecular , Fitoquímicos , Virulencia
3.
Front Cell Infect Microbiol ; 10: 597517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585272

RESUMEN

Blocking virulence is a promising alternative to counteract Pseudomonas aeruginosa infections. In this regard, the phenomenon of cell-cell communication by quorum sensing (QS) is an important anti-virulence target. In this field, fatty acids (FA) have gained notoriety for their role as autoinducers, as well as anti-virulence molecules in vitro, like some saturated FA (SAFA). In this study, we analyzed the anti-virulence activity of SAFA with 12 to18 carbon atoms and compared their effect with the putative autoinducer cis-2-decenoic acid (CDA). The effect of SAFA on six QS-regulated virulence factors and on the secretion of the exoenzyme ExoU was evaluated. In addition, a murine cutaneous infection model was used to determine their influence on the establishment and damage caused by P. aeruginosa PA14. Dodecanoic (lauric, C12:0) and tetradecanoic (myristic, C14:0) acids (SAFA C12-14) reduced the production of pyocyanin by 35-58% at 40 and 1,000 µM, while CDA inhibited it 62% at a 3.1 µM concentration. Moreover, the SAFA C12-14 reduced swarming by 90% without affecting biofilm formation. In contrast, CDA reduced the biofilm by 57% at 3 µM but did not affect swarming. Furthermore, lauric and myristic acids abolished ExoU secretion at 100 and 50 µM respectively, while CDA reduced it by ≈ 92% at 100 µM. Remarkably, the coadministration of myristic acid (200 and 1,000 µM) with P. aeruginosa PA14 induced greater damage and reduced survival of the animals up to 50%, whereas CDA to 500 µM reduced the damage without affecting the viability of the PA14 strain. Hence, our results show that SAFA C12-14 and CDA have a role in regulation of P. aeruginosa virulence, although their inhibition/activation molecular mechanisms are different in complex environments such as in vivo systems.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Antibacterianos/farmacología , Biopelículas , Ratones , Ácidos Mirísticos/farmacología , Percepción de Quorum , Virulencia , Factores de Virulencia/farmacología
4.
Antibiotics (Basel) ; 8(4)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718033

RESUMEN

The anti-microbial properties of acetone extracts from Hibiscus sabdariffa calyces, fractions isolated by silica gel chromatography and hibiscus acid purified from some of these fractions and additionally identified by nuclear magnetic resonance spectroscopy, mid-infrared spectroscopy and X-ray diffraction, were studied against both multidrug-resistant Salmonella strains and pathogenic Escherichia coli bacteria. Gel diffusion was used to determine the anti-microbial effects. The mode of action of hibiscus acid was determined by crystal violet assay. Hibiscus acid and 17 of the 25 chromatographic fractions obtained, displayed an anti-microbial effect against all bacterial strains tested. Hibiscus acid showed a greater anti-microbial effect than the acetone extract against most of the bacteria strains, while chromatographic fractions IX-XIV exerted the greatest anti-microbial effect against all bacteria. The minimum inhibitory concentration of the acetone extract was 7 mg/mL, and the minimum bactericidal concentration was 10 mg/mL, while the corresponding values for hibiscus acid were 4-7 and 7 mg/mL, respectively. The results of the crystal violet assay indicate that hibiscus acid alters membrane permeability. Hibiscus acid is a potential alternative to control multidrug-resistant bacteria. Due to its ready availability and easy extraction from H. sabdariffa, hibiscus acid is potentially useful in the food industries.

5.
Microbiology (Reading) ; 165(4): 425-432, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30707095

RESUMEN

Pseudomonas aeruginosa is an environmental bacterium but is also an opportunistic pathogen. The aim of this work is to evaluate the contribution of P. aeruginosa LasR and RhlR transcriptional regulators of the quorum-sensing response (QSR) to the production of virulence factors, and to its virulence in a mouse abscess model. The QSR is a complex regulatory network that modulates the expression of several virulence factors, including elastase, pyocyanin and rhamnolipids. LasR, when complexed with the auto-inducer 3-oxo-dodecanoyl lactone (3O-C12-HSL), produced by LasI, is at the top of the QSR regulatory cascade since it activates transcription of some genes encoding virulence factors (such as the gene coding for elastase, lasB) and also transcription of both rhlR and rhlI, encoding the synthase of the auto-inducer butanoyl-homoserine lactone (C4-HSL). In turn RhlR, coupled with C4-HSL, activates the transcription of genes encoding for the enzymes involved in pyocyanin and rhamnolipid production. Several efforts have been made to obtain inhibitors of LasR activity that would suppress the QSR. However, these attempts have used chemical compounds that might not be specific for LasR inactivation. In this work we show that individual inactivation of either lasR or rhlR did not block the QSR, nor did it impair P. aeruginosa virulence, and that even a lasR rhlR double mutant still presented residual virulence, even lacking the production of virulence factors. These results show that the inhibition of either lasR or rhlR is not a straightforward approach to blocking P. aeruginosa virulence, due to the great complexity of the QSR.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/genética , Transactivadores/genética , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Masculino , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Ratones , Mutación , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/metabolismo , ARN sin Sentido , Transactivadores/antagonistas & inhibidores , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...