Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585887

RESUMEN

Metabolites and metabolic co-factors can shape the innate immune response, though the pathways by which these molecules adjust inflammation remain incompletely understood. Here we show that the metabolic cofactor Coenzyme A (CoA) enhances IL-4 driven alternative macrophage activation [m(IL-4)] in vitro and in vivo. Unexpectedly, we found that perturbations in intracellular CoA metabolism did not influence m(IL-4) differentiation. Rather, we discovered that exogenous CoA provides a weak TLR4 signal which primes macrophages for increased receptivity to IL-4 signals and resolution of inflammation via MyD88. Mechanistic studies revealed MyD88-linked signals prime for IL-4 responsiveness, in part, by reshaping chromatin accessibility to enhance transcription of IL-4-linked genes. The results identify CoA as a host metabolic co-factor that influences macrophage function through an extrinsic TLR4-dependent mechanism, and suggests that damage-associated molecular patterns (DAMPs) can prime macrophages for alternative activation and resolution of inflammation.

2.
Nucl Med Biol ; 128-129: 108880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330637

RESUMEN

Patients with HER2-positive and triple negative breast cancer (TNBC) are associated with increased risk to develop metastatic disease including reoccurring disease that is resistant to standard and targeted therapies. The αVß3 has been implicated in BC including metastatic disease. The aims of this study were to investigate the potential of αVß3-targeted peptides to deliver radioactive payloads to BC tumors expressing αVß3 on the tumor cells or limited to the tumors' neovascular. Additionally, we aimed to assess the pharmacokinetic profile of the targeted α-particle therapy (TAT) agent [225Ac]Ac-DOTA-cRGDfK dimer peptide and the in vivo generated decay daughters. The expression of αVß3 in a HER2-positive and a TNBC cell line were evaluated using western blot analysis. The pharmacokinetics of [111In]In-DOTA-cRGDfK dimer, a surrogate for the TAT-agent, was evaluated in subcutaneous mouse tumor models. The pharmacokinetic of the TAT-agent [225Ac]Ac-DOTA-cRGDfK dimer and its decay daughters were evaluated in healthy mice. Selective uptake of [111In]In-DOTA-cRGDfK dimer was shown in subcutaneous tumor models using αVß3-positive tumor cells as well as αVß3-negative tumor cells where the expression is limited to the neovasculature. Pharmacokinetic studies demonstrated rapid accumulation in the tumors with clearance from non-target organs. Dosimetric analysis of [225Ac]Ac-DOTA-cRGDfK dimer showed the highest radiation absorbed dose to the kidneys, which included the contributions from the free in vivo generated decay daughters. This study shows the potential of delivering radioactive payloads to BC tumors that have αVß3 expression on the tumor cells as well as limited expression to the neovascular of the tumor. Furthermore, this work determines the radiation absorbed doses to normal organs/tissues and identified key organs that act as suppliers and receivers of the actinium-225 free in vivo generated α-particle-emitting decay daughters.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Oligopéptidos/farmacocinética , Péptidos , Integrina alfaVbeta3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA