Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 6(11): 3321-3328, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35358295

RESUMEN

Transforming growth factor ß1 (TGF-ß1) regulates a wide variety of events in adult bone marrow (BM), including quiescence of hematopoietic stem cells, via undefined mechanisms. Because megakaryocytes (MKs)/platelets are a rich source of TGF-ß1, we assessed whether TGF-ß1 might inhibit its own production by comparing mice with conditional inactivation of Tgfb1 in MKs (PF4Cre;Tgfb1flox/flox) and control mice. PF4Cre;Tgfb1flox/flox mice had ∼30% more MKs in BM and ∼15% more circulating platelets than control mice (P < .001). Thrombopoietin (TPO) levels in plasma and TPO expression in liver were approximately twofold higher in PF4Cre;Tgfb1flox/flox than in control mice (P < .01), whereas TPO expression in BM cells was similar between these mice. In BM cell culture, TPO treatment increased the number of MKs from wild-type mice by approximately threefold, which increased approximately twofold further in the presence of a TGF-ß1-neutralizing antibody and increased the number of MKs from PF4Cre;Tgfb1flox/flox mice approximately fourfold. Our data reveal a new role for TGF-ß1 produced by MKs/platelets in regulating its own production in BM via increased TPO production in the liver. Additional studies are required to determine the mechanism.


Asunto(s)
Médula Ósea/metabolismo , Megacariocitos , Trombopoyetina , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Plaquetas/metabolismo , Hígado/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Trombopoyetina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...