Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 59, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229174

RESUMEN

BACKGROUND: Loss-of-function mutations in the PRKN gene, encoding Parkin, are the most common cause of autosomal recessive Parkinson's disease (PD). We have previously identified mitoch ondrial Stomatin-like protein 2 (SLP-2), which functions in the assembly of respiratory chain proteins, as a Parkin-binding protein. Selective knockdown of either Parkin or SLP-2 led to reduced mitochondrial and neuronal function in neuronal cells and Drosophila, where a double knockdown led to a further worsening of Parkin-deficiency phenotypes. Here, we investigated the minimal Parkin region involved in the Parkin-SLP-2 interaction and explored the ability of Parkin-fragments and peptides from this minimal region to restore mitochondrial function. METHODS: In fibroblasts, human induced pluripotent stem cell (hiPSC)-derived neurons, and neuroblastoma cells the interaction between Parkin and SLP-2 was investigated, and the Parkin domain responsible for the binding to SLP-2 was mapped. High resolution respirometry, immunofluorescence analysis and live imaging were used to analyze mitochondrial function. RESULTS: Using a proximity ligation assay, we quantitatively assessed the Parkin-SLP-2 interaction in skin fibroblasts and hiPSC-derived neurons. When PD-associated PRKN mutations were present, we detected a significantly reduced interaction between the two proteins. We found a preferential binding of SLP-2 to the N-terminal part of Parkin, with a highest affinity for the RING0 domain. Computational modeling based on the crystal structure of Parkin protein predicted several potential binding sites for SLP-2 within the Parkin RING0 domain. Amongst these, three binding sites were observed to overlap with natural PD-causing missense mutations, which we demonstrated interfere substantially with the binding of Parkin to SLP-2. Finally, delivery of the isolated Parkin RING0 domain and a Parkin mini-peptide, conjugated to cell-permeant and mitochondrial transporters, rescued compromised mitochondrial function in Parkin-deficient neuroblastoma cells and hiPSC-derived neurons with endogenous, disease causing PRKN mutations. CONCLUSIONS: These findings place further emphasis on the importance of the protein-protein interaction between Parkin and SLP-2 for the maintenance of optimal mitochondrial function. The possibility of restoring an abolished binding to SLP-2 by delivering the Parkin RING0 domain or the Parkin mini-peptide involved in this specific protein-protein interaction into cells might represent a novel organelle-specific therapeutic approach for correcting mitochondrial dysfunction in Parkin-linked PD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Neuroblastoma , Enfermedad de Parkinson , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Parkinson/genética , Péptidos
2.
NPJ Parkinsons Dis ; 9(1): 44, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973269

RESUMEN

In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768321

RESUMEN

Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutación , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361881

RESUMEN

Mutations in the SZT2 gene have been associated with developmental and epileptic encephalopathy-18, a rare severe autosomal recessive neurologic disorder, characterized by psychomotor impairment/intellectual disability, dysmorphic facial features and early onset of refractory seizures. Here we report the generation of the first induced pluripotent stem cell (iPSC) lines from a patient with treatment-resistant epilepsy, carrying compound heterozygous mutations in SZT2 (Mut1: c.498G>T and Mut2: c.6553C>T), and his healthy heterozygous parents. Peripheral blood mononuclear cells were reprogrammed by a non-integrating Sendai virus-based reprogramming system. The generated human iPSC lines exhibited expression of the main pluripotency markers, the potential to differentiate into all three germ layers and presented a normal karyotype. These lines represent a valuable resource to study neurodevelopmental alterations, and to obtain mature, pathology-relevant neuronal populations as an in vitro model to perform functional assays and test the patient's responsiveness to novel antiepileptic treatments.


Asunto(s)
Epilepsia Generalizada , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares , Mutación , Heterocigoto , Proteínas del Tejido Nervioso/metabolismo
5.
Cells ; 10(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685691

RESUMEN

Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapas de Interacción de Proteínas , Aminoácidos/deficiencia , Animales , Proteínas Sanguíneas/farmacología , Cilios/efectos de los fármacos , Cilios/metabolismo , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Organogénesis/efectos de los fármacos , Análisis de Componente Principal , Mapas de Interacción de Proteínas/efectos de los fármacos , Sirolimus/farmacología
6.
Cell Death Discov ; 6: 45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550012

RESUMEN

The Parkinson's disease (PD)-associated kinase Leucine-Rich Repeat Kinase 2 (LRRK2) is a crucial modulator of the autophagy-lysosome pathway, but unclarity exists on the precise mechanics of its role and the direction of this modulation. In particular, LRRK2 is involved in the degradation of pathological alpha-synuclein, with pathogenic mutations precipitating neuropathology in cellular and animal models of PD, and a significant proportion of LRRK2 patients presenting Lewy neuropathology. Defects in autophagic processing and lysosomal degradation of alpha-synuclein have been postulated to underlie its accumulation and onset of neuropathology. Thus, it is critical to obtain a comprehensive knowledge on LRRK2-associated pathology. Here, we investigated a G2019S-LRRK2 recombinant cell line exhibiting accumulation of endogenous, phosphorylated alpha-synuclein. We found that G2019S-LRRK2 leads to accumulation of LC3 and abnormalities in lysosome morphology and proteolytic activity in a kinase-dependent fashion, but independent from constitutively active Rab10. Notably, LRRK2 inhibition was ineffective upon upstream blockade of autophagosome-lysosome fusion events, highlighting this step as critical for alpha-synuclein clearance.

7.
Stem Cell Res ; 41: 101656, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733438

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase - enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.


Asunto(s)
Sistemas CRISPR-Cas , Neuronas Dopaminérgicas/metabolismo , Edición Génica , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/biosíntesis , Células Madre Pluripotentes Inducidas/metabolismo , Reacción en Cadena de la Polimerasa , Transgenes , Línea Celular , Neuronas Dopaminérgicas/citología , Proteínas Fluorescentes Verdes/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Microscopía Fluorescente
8.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3588-3597, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254015

RESUMEN

Multiple System Atrophy is a severe neurodegenerative disorder which is characterized by a variable clinical presentation and a broad neuropathological spectrum. The pathogenic mechanisms are almost completely unknown. In the present study, we established a cellular model of MSA by using fibroblasts' primary cultures and performed several experiments to investigate the causative mechanisms of the disease, with a particular focus on mitochondrial functioning. Fibroblasts' analyses (7 MSA-P, 7 MSA-C and 6 healthy controls) displayed several anomalies in patients: an impairment of respiratory chain activity, in particular for succinate Coenzyme Q reductase (p < 0.05), and a reduction of complex II steady-state level (p < 0.01); a reduction of Coenzyme Q10 level (p < 0.001) and an up-regulation of some CoQ10 biosynthesis enzymes, namely COQ5 and COQ7; an impairment of mitophagy, demonstrated by a decreased reduction of mitochondrial markers after mitochondrial inner membrane depolarization (p < 0.05); a reduced basal autophagic activity, shown by a decreased level of LC3 II (p < 0.05); an increased mitochondrial mass in MSA-C, demonstrated by higher TOMM20 levels (p < 0.05) and suggested by a wide analysis of mitochondrial DNA content in blood of large cohorts of patients. The present study contributes to understand the causative mechanisms of Multiple System Atrophy. In particular, the observed impairment of respiratory chain activity, mitophagy and Coenzyme Q10 biosynthesis suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis of the disease. Furthermore, these findings will hopefully contribute to identify novel therapeutic targets for this still incurable disorder.


Asunto(s)
Fibroblastos/patología , Mitocondrias/patología , Atrofia de Múltiples Sistemas/patología , Autofagia , Células Cultivadas , ADN Mitocondrial/análisis , ADN Mitocondrial/metabolismo , Complejo II de Transporte de Electrones/análisis , Complejo II de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitofagia , Atrofia de Múltiples Sistemas/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/análisis , Ubiquinona/metabolismo
9.
Front Cell Neurosci ; 12: 81, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623032

RESUMEN

Primary neuronal culture from rodents is a well-established model to investigate cellular neurobiology in vitro. However, for this purpose cell cultures need to be generated expressly, requiring extensive animal handling. Furthermore, often the preparation of fresh culture generates an excess of cells that are ultimately wasted. Therefore the ability to successfully cryopreserve primary neural cells would represent an important resource for neuroscience research and would allow to significantly reduce the sacrifice of animals. We describe here a novel freezing medium that allows long-term cryopreservation of primary mouse neurons prepared from E15.5 embryos. Combining imaging, biochemical and electrophysiological analyses, we found that cryopreserved cultures are viable and mature regarding morphology and functionality. These findings suggest that cryopreserved neurons are a valuable alternative to acutely dissociated neural cultures.

10.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385061

RESUMEN

SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.


Asunto(s)
Ácidos Hidroxámicos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Procesamiento Proteico-Postraduccional , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Acetilación , Animales , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Vorinostat
11.
Biochem Biophys Res Commun ; 490(3): 876-881, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28647363

RESUMEN

The Ca2+-dependent activator protein for secretion 2 (CADPS2) is a member of the CAPS/CADPS protein family that plays crucial roles in synaptic vesicle dynamics. Genomic variability in the CADPS2 gene has been associated to autism spectrum disorders and Alzheimer's disease, both characterized by altered neurotransmission. Biological evidence also linked CADPS2 to Parkinson's disease (PD), as a disease-causing mutation in leucine-rich repeat kinase 2 (LRRK2) was reported to increase CADPS2 gene and protein expression. Furthermore, restoration of CADPS2 physiologic levels was able to provide neuroprotection in patient-derived neurons, consistent with the synaptic dysfunction postulated to underlie PD. However, little is known about the influence of PD-related proteins on transcriptional regulation of critical synaptic genes such as CADPS2. Here we aimed at investigating the transcriptional effects of LRRK2 and alpha-synuclein (aSyn) on CADPS2 gene expression, using a combination of in silico analyses and cell biology techniques. First, we identified a predicted promoter in the human CADPS2 genomic sequence, which we then utilized in a luciferase-based gene reporter assay. This approach enabled us to disclose a differential effect of high levels of LRRK2 and aSyn on CADPS2 promoter activity. Specifically, CADPS2 transcriptional activity was enhanced by high cellular levels of LRRK2 and reduced by overexpression of aSyn. Consistently, CADPS2 mRNA levels were diminished in aSyn overexpressing cells. Our results indicate that LRRK2 and aSyn participate in the dysregulation of CADPS2 by altering transcription and support the hypothesis that synaptic dysfunctions, through different mechanisms, might contribute to the neuronal defects of diseases such as PD.


Asunto(s)
Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas de Transporte Vesicular/genética , alfa-Sinucleína/genética , Secuencia de Bases , Línea Celular , Expresión Génica , Humanos , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , Activación Transcripcional , Regulación hacia Arriba
12.
Cell Signal ; 30: 82-91, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871937

RESUMEN

Alpha-synuclein is central to Parkinson's disease pathogenesis and pathology, however its precise functions are still unclear. It has been shown to bind both PLCß1 and MAPKs, but how this property influences the downstream signaling of Gq protein-coupled receptors has not been elucidated. Here we show that recombinant expression of alpha-synuclein in human neuroblastoma cells enhances cellular levels of PLCß1 but blunts its signaling pathway, preventing the agonist-dependent rise of cytoplasmic Ca2+. In addition, overexpressing alpha-synuclein abolishes the activation of ERK1/2 upon agonist stimulation, indicating an upstream action in the signal transduction pathway. This data demonstrates that alpha-synuclein, when recombinantly expressed, interferes with the normal signaling of Gq-protein coupled receptors, which are then dysfunctional. Since many neurotransmitter systems utilize these receptor signaling pathways to mediate different abilities affected in Parkinson's disease, we argue this novel perspective might be helpful in designing treatment strategies for some of the non-motor symptoms in Parkinson's disease and synucleinopathies.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , alfa-Sinucleína/metabolismo , Animales , Células CHO , Calcio/metabolismo , Línea Celular Tumoral , Cricetinae , Cricetulus , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfolipasa C beta/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo
13.
Peptides ; 61: 107-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25240770

RESUMEN

The neuropeptide S (NPS) system is characterized by a unique pharmacology because it has anxiolytic-like effects and promotes arousal and wakefulness. To shed light on this peptidergic system, we tested the sedative effect of the central depressants diazepam and ethanol on the loss of righting reflex in mice lacking the neuropeptide S receptor (NPSR), NPSR(-/-). Furthermore, we tested the effect of the intracerebroventricular (ICV) administration of NPS on the sedative effect of diazepam and ethanol in NPSR(-/-) and their wild type counterpart NPSR(+/+). Finally, we evaluated the effect of the pro-arousal neuropeptides CRF and Hcrt-1/Ox-A in NPSR-deficient mice. Contrary to our expectations, the results showed that the NPSR(-/-) were less sensitive to the hypnotic effects of both diazepam and ethanol compared with their wild type littermates. ICV NPS was able to attenuate the sedative effect of both alcohol and diazepam in wild type mice, but not in the NPSR(-/-) line. The administration of CRF and Hcrt-1/Ox-A, two classic pro-arousal peptides, elicited the same effects in both NPSR(-/-) and wild type mice, ruling out the possibility that adaptive mechanisms occurring at the level of these two systems could have occurred during NPSR(-/-) development to compensate for the lack of NPSR receptors. Our findings demonstrated that the deletion of NPSR leads to minor changes in the arousal behavior of mice. Moreover, we demonstrated that the deletion of NPSR did not lead to compensatory changes in the vigilance-promoting effects of the CRF and Hcrt-1/Ox-A systems.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Diazepam/farmacología , Etanol/farmacología , Hipnóticos y Sedantes/farmacología , Receptores de Neuropéptido/deficiencia , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Ratones , Ratones Noqueados , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Orexinas
14.
J Neurosci ; 33(17): 7285-98, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616537

RESUMEN

Group II metabotropic glutamate receptors (mGlu-IIs) modulate hippocampal information processing through several presynaptic actions. We describe a novel postsynaptic inhibitory mechanism mediated by the mGlu2 subtype that activates an inwardly rectifying potassium conductance in the dendrites of DG granule cells of rats and mice. Data from glutamate-uncaging experiments and simulations indicate that mGlu2-activated potassium conductance uniformly reduces the peak amplitude of synaptic inputs arriving in the distal two-thirds of dendrites, with only minor effects on proximal inputs. This unique shunting profile is consistent with a peak expression of the mGlu2-activated conductance at the transition between the proximal and middle third of the dendrites. Further simulations under various physiologically relevant conditions showed that when a shunting conductance was activated in the proximal third of a single dendrite, it effectively modulated input to this specific branch while leaving inputs in neighboring dendrites relatively unaffected. Therefore, the restricted expression of the mGlu2-activated potassium conductance in the proximal third of DG granule cell dendrites represents an optimal localization for achieving the opposing biophysical requirements for uniform yet selective modulation of individual dendritic branches.


Asunto(s)
Dendritas/metabolismo , Giro Dentado/metabolismo , Inhibición Neural/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Animales , Giro Dentado/citología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Canales de Potasio de Rectificación Interna/genética , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/deficiencia , Receptores de Glutamato Metabotrópico/genética
15.
Neuropsychopharmacology ; 38(10): 2048-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23624743

RESUMEN

Medication development for cocaine-addicted patients is difficult, and many promising preclinical candidates have failed in clinical trials. One reason for the difficulty in translating preclinical findings to the human condition is that drug testing is typically conducted in behavioral procedures in which animals do not show addiction-like traits. Recently, a DSM-IV-based animal model has been developed that allows studying the transition to an addiction-like behavior. Changes in synaptic plasticity are involved in the transition to cocaine addiction. In particular, it has been shown that metabotropic glutamate receptor 2/3 (mGluR2/3)-mediated long-term depression is suppressed in the prelimbic cortex in addict-like rats. We therefore hypothesized that cocaine-seeking in addict-like rats could be treated with an mGluR2/3 agonist. Indeed, addict-like rats that were treated systemically with the mGluR2/3 agonist LY379268 (0, 0.3, and 3 mg/kg) showed a pronounced reduction in cue-induced reinstatement of cocaine-seeking. In an attempt to dissect the role played by mGluR2 and mGluR3 in cue-induced reinstatement, we analyzed the mRNA expression patterns in several relevant brain areas but did not find any significant differences between cocaine addict-like and non-addict-like rats, suggesting that the behavioral differences observed are due to translational rather than transcriptional regulation. Another possibility to study the contributions of mGluR2 and mGluR3 in mediating addictive-like behavior is the use of knockout models. Because mGluR2 knockouts cannot be used in operant procedures due to motoric impairment, we only tested mGluR3 knockouts. These mice did not differ from controls in reinstatement, suggesting that mGluR2 receptors are critical in mediating addictive-like behavior.


Asunto(s)
Aminoácidos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cocaína/antagonistas & inhibidores , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Animales , Cocaína/administración & dosificación , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Señales (Psicología) , Relación Dosis-Respuesta a Droga , Extinción Psicológica/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Ratas , Receptores de Glutamato Metabotrópico/biosíntesis , Receptores de Glutamato Metabotrópico/genética , Autoadministración
16.
Neuropsychopharmacology ; 37(9): 2121-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22549116

RESUMEN

During the past decade, it has been shown that circadian clock genes have more than a simple circadian time-keeping role. Clock genes also modulate motivational processes and have been implicated in the development of psychiatric disorders such as drug addiction. Recent studies indicate that casein-kinase 1ε/δ (CK1ε/δ)--one of the components of the circadian molecular clockwork-might be involved in the etiology of addictive behavior. The present study was initiated to study the specific role of CK1ε/δ in alcohol relapse-like drinking using the 'Alcohol Deprivation Effect' model. The effect of CK1ε/δ inhibition was tested on alcohol consumption in long-term alcohol-drinking rats upon re-exposure to alcohol after deprivation using a four-bottle free-choice paradigm with water, 5%, 10%, and 20% ethanol solutions, as well as on saccharin preference in alcohol-naive rats. The inhibition of CK1ε/δ with systemic PF-670462 (0, 10, and 30 mg/kg) injections dose-dependently decreased, and at a higher dosage prevented the alcohol deprivation effect, as compared with vehicle-treated rats. The impact of the treatment was further characterized using nonlinear regression analyses on the daily profiles of drinking and locomotor activity. We reveal that CK1ε/δ inhibition blunted the high daytime alcohol intake typically observed upon alcohol re-exposure, and induced a phase shift of locomotor activity toward daytime. Only the highest dose of PF-670462 shifted the saccharin intake daily rhythm toward daytime during treatment, and decreased saccharin preference after treatment. Our data suggest that CK1 inhibitors may be candidates for drug treatment development for alcoholism.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Alcoholismo/enzimología , Animales , Caseína Cinasa 1 épsilon/fisiología , Quinasa Idelta de la Caseína/fisiología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Ratas Wistar , Prevención Secundaria
17.
Neuropsychopharmacology ; 36(13): 2616-28, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21832989

RESUMEN

Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3(-/-)) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3(-/-) mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal-cognition relationship in GRM2/3(-/-) mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3(-/-) mice. GRM2/3(-/-) mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders.


Asunto(s)
Nivel de Alerta/fisiología , Cognición/fisiología , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Receptores de Glutamato Metabotrópico/deficiencia , Receptores de Glutamato Metabotrópico/fisiología , Animales , Hipocampo/fisiopatología , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Receptores de Glutamato Metabotrópico/genética
18.
Proc Natl Acad Sci U S A ; 108(33): 13823-8, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21808016

RESUMEN

Low-threshold (T-type) Ca(2+) channels encoded by the Ca(V)3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three Ca(V)3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. Ca(V)3.3 protein is expressed abundantly in the nucleus reticularis thalami (nRt), an essential oscillatory burst generator. We report the characterization of a transgenic Ca(V)3.3(-/-) mouse line and demonstrate that Ca(V)3.3 channels are indispensable for nRt function and for sleep spindles, a hallmark of natural sleep. The absence of Ca(V)3.3 channels prevented oscillatory bursting in the low-frequency (4-10 Hz) range in nRt cells but spared tonic discharge. In contrast, adjacent TC neurons expressing Ca(V)3.1 channels retained low-threshold bursts. Nevertheless, the generation of synchronized thalamic network oscillations underlying sleep-spindle waves was weakened markedly because of the reduced inhibition of TC neurons via nRt cells. T currents in Ca(V)3.3(-/-) mice were <30% compared with those in WT mice, and the remaining current, carried by Ca(V)3.2 channels, generated dendritic [Ca(2+)](i) signals insufficient to provoke oscillatory bursting that arises from interplay with Ca(2+)-dependent small conductance-type 2 K(+) channels. Finally, naturally sleeping Ca(V)3.3(-/-) mice showed a selective reduction in the power density of the σ frequency band (10-12 Hz) at transitions from NREM to REM sleep, with other EEG waves remaining unaltered. Together, these data identify a central role for Ca(V)3.3 channels in the rhythmogenic properties of the sleep-spindle generator and provide a molecular target to elucidate the roles of sleep spindles for brain function and development.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Sueño/fisiología , Tálamo/fisiología , Animales , Ondas Encefálicas , Señalización del Calcio , Electroencefalografía , Ratones , Ratones Noqueados , Neuronas/fisiología , Sueño REM
19.
Proc Natl Acad Sci U S A ; 108(24): 9993-7, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628565

RESUMEN

Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.


Asunto(s)
Región CA3 Hipocampal/fisiología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Aminoácidos/farmacología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Ciclopropanos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Glicina/análogos & derivados , Glicina/farmacología , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica , Red Nerviosa/metabolismo , Técnicas de Placa-Clamp , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/genética , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Xantenos/farmacología
20.
Synapse ; 65(9): 945-54, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21360593

RESUMEN

Group II metabotropic glutamate receptors (mGluR2, encoded by Grm2, and mGluR3, encoded by Grm3) are inhibitory autoreceptors that negatively modulate the adenylate cyclase signaling cascade. Within the hippocampus, mGluR2 is believed to play a key role in the induction of long-term depression (LTD) at mossy fiber-CA3 synapses. Here, we used Grm2/3 double knockout (dko) mice to investigate to what extent group II mGluRs are necessary for mossy fiber LTD. Surprisingly, we found that these mice displayed prominent mossy fiber LTD. However, the induction of this form of LTD was sensitive to the external Ca(2+) concentration. Mossy fiber LTD in Grm2/3 dko mice was indistinguishable from that in wild-type mice at 4 mM Ca(2+) , but largely absent at 2 mM external Ca(2+) . Mossy fiber LTD in Grm2/3 dko mice was not blocked by the N-methyl-D-aspartic acid (NMDA) receptor antagonist D-AP5, confirming that the observed response did not reflect NMDA receptor-dependent LTD in contaminating associational-commissural fibers, and enabling us to use the NMDA receptor-mediated EPSC to monitor mossy fiber LTD. Using whole-cell recordings, we demonstrated that LTD of the NMDA receptor-mediated EPSC in Grm2/3 dko mice was not affected by intracellular application of BAPTA and CsF to block postsynaptic Ca(2+) and G-protein-mediated effects. This presynaptic LTD was, however, blocked by the AMPA/kainate receptor antagonist, NBQX. Thus, an activity-dependent, external Ca(2+) concentration-sensitive form of mossy fiber LTD can be induced in Grm2/3 dko mice. Two mGluR antagonists also failed to block mossy fiber LTD under 4 mM conditions in wild-type mice, strengthening the conclusion that group II mGluRs are not obligatory for mossy fiber LTD.


Asunto(s)
Hipocampo/anatomía & histología , Depresión Sináptica a Largo Plazo/genética , Fibras Musgosas del Hipocampo/fisiología , Receptores de Glutamato Metabotrópico/deficiencia , Animales , Biofisica , Calcio/metabolismo , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Magnesio/metabolismo , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/efectos de los fármacos , Técnicas de Placa-Clamp , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...