Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 15(5): 602-609, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38746883

RESUMEN

In this structure-activity relationship (SAR) study, we report the development of dual inhibitors with antiviral properties targeting the SARS-CoV-2 main protease (Mpro) and human cathepsin L (hCatL). The novel molecules differ in the aliphatic amino acids at the P2 site and the fluorine position on the phenyl ring at the P3 site. The identified dual inhibitors showed Ki values within 1.61 and 10.72 µM against SARS-CoV-2 Mpro; meanwhile, Ki values ranging from 0.004 to 0.701 µM toward hCatL were observed. A great interdependency between the nature of the side chain at the P2 site and the position of the fluorine atom was found. Three dual-targeting inhibitors exhibited antiviral activity in the low micromolar range with CC50 values >100 µM. Docking simulations were executed to gain a deeper understanding of the SAR profile. The findings herein collected should be taken into consideration for the future development of dual SARS-CoV-2 Mpro/hCatL inhibitors.

2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673995

RESUMEN

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Asunto(s)
Inhibidores de Cisteína Proteinasa , Nitrilos , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/uso terapéutico , Inhibidores de Cisteína Proteinasa/química , Malaria/tratamiento farmacológico , Nitrilos/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico
3.
J Chem Inf Model ; 64(7): 2143-2149, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552222

RESUMEN

The present contribution introduces a novel computational protocol called PyRMD2Dock, which combines the Ligand-Based Virtual Screening (LBVS) tool PyRMD with the popular docking software AutoDock-GPU (AD4-GPU) to enhance the throughput of virtual screening campaigns for drug discovery. By implementing PyRMD2Dock, we demonstrate that it is possible to rapidly screen massive chemical databases and identify those with the highest predicted binding affinity to a target protein. Our benchmarking and screening experiments illustrate the predictive power and speed of PyRMD2Dock and highlight its potential to accelerate the discovery of novel drug candidates. Overall, this study showcases the value of combining AI-powered LBVS tools with docking software to enable effective and high-throughput virtual screening of ultralarge molecular databases in drug discovery. PyRMD and the PyRMD2Dock protocol are freely available on GitHub (https://github.com/cosconatilab/PyRMD) as an open-source tool.


Asunto(s)
Inteligencia Artificial , Programas Informáticos , Simulación del Acoplamiento Molecular , Proteínas/química , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Ligandos
4.
Cell Chem Biol ; 30(12): 1652-1665.e6, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38065101

RESUMEN

The TRF2 shelterin component is an essential regulator of telomere homeostasis and genomic stability. Mutations in the TRF2TRFH domain physically impair t-loop formation and prevent the recruitment of several factors that promote efficient telomere replication, causing telomeric DNA damage. Here, we design, synthesize, and biologically test covalent cyclic peptides that irreversibly target the TRF2TRFH domain. We identify APOD53 as our most promising compound, as it consistently induces a telomeric DNA damage response in cancer cell lines. APOD53 forms a covalent adduct with a reactive cysteine residue present in the TRF2TRFH domain and induces phenotypes consistent with TRF2TRFH domain mutants. These include induction of a telomeric DNA damage response, increased telomeric replication stress, and impaired recruitment of RTEL1 and SLX4 to telomeres. We demonstrate that APOD53 impairs cancer cell growth and find that co-treatment with APOD53 can exacerbate telomere replication stress caused by the G4 stabilizer RHPS4 and low dose aphidicolin (APH).


Asunto(s)
Péptidos Cíclicos , Proteína 2 de Unión a Repeticiones Teloméricas , Daño del ADN , Péptidos Cíclicos/farmacología , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas/antagonistas & inhibidores , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Dominios Proteicos , Línea Celular Tumoral
5.
J Med Chem ; 66(19): 13665-13683, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37560786

RESUMEN

Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Arginina/química , Metilación , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores
6.
Eur J Med Chem ; 256: 115446, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37182332

RESUMEN

BRAF represents one of the most frequently mutated protein kinase genes and BRAFV600E mutation may be found in many types of cancer, including hairy cell leukemia (HCL), anaplastic thyroid cancer (ATC), colorectal cancer and melanoma. Herein, a fluorescent probe, based on the structure of the highly specific BRAFV600E inhibitor Vemurafenib (Vem, 1) and featuring the NIR fluorophore cyanine-5 (Cy5), was straightforwardly synthesized and characterized (Vem-L-Cy5, 3), showing promising spectroscopic properties. Biological validation in BRAFV600E-mutated cancer cells evidenced the ability of 3 to penetrate inside the cells, specifically binding to its elective target BRAFV600E with high affinity, and inhibiting MEK phosphorylation and cell growth with a potency comparable to that of native Vem 1. Taken together, these data highlight Vem-L-Cy5 3 as a useful tool to probe BRAFV600E mutation in cancer cells, and suitable to acquire precious insights for future developments of more informed BRAF inhibitors-centered therapeutic strategies.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral
7.
Ultrason Sonochem ; 95: 106360, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913782

RESUMEN

Herein, we developed an innovative and easily accessible solid-phase synthetic protocol for Peptide Nucleic Acid (PNA) oligomers by systematically investigating the ultrasonication effects in all steps of the PNA synthesis (US-PNAS). When compared with standard protocols, the application of the so-obtained US-PNAS approach succeeded in improving the crude product purities and the isolated yields of different PNA, including small or medium-sized oligomers (5-mer and 9-mer), complex purine-rich sequences (like a 5-mer Guanine homoligomer and the telomeric sequence TEL-13) and longer oligomers (such as the 18-mer anti-IVS2-654 PNA and the 23-mer anti-mRNA 155 PNA). Noteworthy, our ultrasound-assisted strategy is compatible with the commercially available PNA monomers and well-established coupling reagents and only requires the use of an ultrasonic bath, which is a simple equipment generally available in most synthetic laboratories.


Asunto(s)
Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/genética , ARN Mensajero , Guanina
8.
Eur J Med Chem ; 247: 115021, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549112

RESUMEN

Despite several major achievements in the development of vaccines and antivirals, the fight against SARS-CoV-2 and the health problems accompanying COVID-19 are still ongoing. SARS-CoV-2 main protease (Mpro), an essential viral cysteine protease, is a crucial target for the development of antiviral agents. A virtual screening analysis of in-house cysteine protease inhibitors against SARS-CoV-2 Mpro allowed us to identify two hits (i.e., 1 and 2) bearing a methyl vinyl ketone warhead. Starting from these compounds, we herein report the development of Michael acceptors targeting SARS-CoV-2 Mpro, which differ from each other for the warhead and for the amino acids at the P2 site. The most promising vinyl methyl ketone-containing analogs showed sub-micromolar activity against the viral protease. SPR38, SPR39, and SPR41 were fully characterized, and additional inhibitory properties towards hCatL, which plays a key role in the virus entry into host cells, were observed. SPR39 and SPR41 exhibited single-digit micromolar EC50 values in a SARS-CoV-2 infection model in cell culture.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química , Péptidos , Cetonas/farmacología , Simulación del Acoplamiento Molecular
9.
ACS Med Chem Lett ; 13(7): 1083-1090, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859868

RESUMEN

Human African Trypanosomiasis (HAT) is a neglected tropical disease widespread in sub-Saharan Africa. Rhodesain, a cysteine protease of Trypanosoma brucei rhodesiense, has been identified as a valid target for the development of anti-HAT agents. Herein, we report a series of urea-bond-containing Michael acceptors, which were demonstrated to be potent rhodesain inhibitors with K i values ranging from 0.15 to 2.51 nM, and five of them showed comparable k 2nd values to that of K11777, a potent antitrypanosomal agent. Moreover, most of the urea derivatives exhibited single-digit micromolar activity against the protozoa, and the presence of substituents at the P3 position appears to be essential for the antitrypanosomal effect. Replacement of Phe with Leu at the P2 site kept unchanged the inhibitory properties. Compound 7 (SPR7) showed the best compromise in terms of rhodesain inhibition, selectivity, and antiparasitic activity, thus representing a new lead compound for future SAR studies.

10.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744891

RESUMEN

Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led to a panel of inhibitors endowed with micro/sub-micromolar activity towards the protozoa. However, whilst impressive binding affinity against rhodesain has been observed, the limited selectivity towards the target still remains a hard challenge for the development of antitrypanosomal agents. In this paper, we report the synthesis, biological evaluation, as well as docking studies of a series of reduced peptide bond pseudopeptide Michael acceptors (SPR10-SPR19) as potential anti-HAT agents. The new molecules show Ki values in the low-micro/sub-micromolar range against rhodesain, coupled with k2nd values between 1314 and 6950 M-1 min-1. With a few exceptions, an appreciable selectivity over human cathepsin L was observed. In in vitro assays against T. b. brucei cultures, SPR16 and SPR18 exhibited single-digit micromolar activity against the protozoa, comparable to those reported for very potent rhodesain inhibitors, while no significant cytotoxicity up to 70 µM towards mammalian cells was observed. The discrepancy between rhodesain inhibition and the antitrypanosomal effect could suggest additional mechanisms of action. The biological characterization of peptide inhibitor SPR34 highlights the essential role played by the reduced bond for the antitrypanosomal effect. Overall, this series of molecules could represent the starting point for further investigations of reduced peptide bond-containing analogs as potential anti-HAT agents.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , África del Norte , Animales , Inhibidores de Cisteína Proteinasa/química , Humanos , Mamíferos , Tripanocidas/química , Tripanosomiasis Africana/tratamiento farmacológico
11.
Eur J Med Chem ; 236: 114328, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385806

RESUMEN

In this paper, we developed a new series of dipeptide nitriles that were demonstrated to be reversible rhodesain inhibitors at nanomolar level, with EC50 values against cultured T. b. brucei in the micromolar range. We also proved that our dipeptide nitriles directly bind to the active site of rhodesain acting as competitive inhibitors. Within the most interesting compounds, the dipeptide nitrile 2b showed the highest binding affinity towards rhodesain (Ki = 16 nM) coupled with a good antiparasitic activity (EC50 = 14.1 µM). Moreover, for the dipeptide nitrile 3e, which showed a Ki = 122 nM towards the trypanosomal protease, we obtained the highest antiparasitic activity (EC50 = 8.8 µM). Thus, given the obtained results both compounds could certainly represent new lead compounds for the discovery of new drugs to treat Human African Trypanosomiasis.


Asunto(s)
Inhibidores de Cisteína Proteinasa , Dipéptidos , Nitrilos , Tripanocidas , Trypanosoma brucei rhodesiense , Cisteína Endopeptidasas , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/química , Dipéptidos/farmacología , Nitrilos/química , Nitrilos/farmacología , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos
12.
J Med Chem ; 65(5): 4007-4017, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35188390

RESUMEN

The pleiotropic role played by melanocortin receptors (MCRs) in both physiological and pathological processes has stimulated medicinal chemists to develop synthetic agonists/antagonists with improved potency and selectivity. Here, by deploying the Chemical Linkage of Peptide onto Scaffolds strategy, we replaced the lactam cyclization of melanotan II (MT-II), a potent and unselective agonist of human MCRs (hMCRs), with different xylene-derived thioethers. The newly designed peptides displayed binding affinities toward MCRs ranging from the low nanomolar to the sub-micromolar range, highlighting a correlation between the explored linkers and the affinity toward hMCRs. In contrast to the parent peptide (MT-II), compound 5 displayed a remarkable functional selectivity toward the hMC1R. Enhanced sampling molecular dynamics simulations were found to be instrumental in outlining how the employed cyclization strategy affects the peptides' conformational behavior and, as a consequence, the detected hMC1R affinity. Additionally, a model of the peptide 5/hMC1R complex employing the very recently reported cryogenic electron microscopy receptor structure was provided.


Asunto(s)
Receptores de Melanocortina , alfa-MSH , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Receptores de Melanocortina/química , Relación Estructura-Actividad , alfa-MSH/análogos & derivados , alfa-MSH/química
13.
FASEB J ; 35(12): e22026, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34818435

RESUMEN

Antibiotic resistance is becoming a severe obstacle in the fight against acute and chronic infectious diseases that accompany most degenerative illnesses from neoplasia to osteo-arthritis and obesity. Currently, the race is on to identify pharmaceutical molecules or combinations of molecules able to prevent or reduce the insurgence and/or progression of infectivity. Attempts to substitute antibiotics with antimicrobial peptides have, thus far, met with little success against multidrug-resistant (MDR) bacterial strains. During the last decade, we designed and studied the activity and features of human ß-defensin analogs, which are salt-resistant, and hence active also under high salt concentrations as, for instance, in cystic fibrosis. Herein, we describe the design, synthesis, and major features of a new 21 aa long molecule, peptide γ2. The latter derives from the γ-core of the ß-defensin natural molecules, a small fragment of these molecules still bearing high antibacterial activity. We found that peptide γ2, which contains only one disulphide bond, recapitulates most of the biological properties of natural human ß-defensins and can also counteract both Gram-positive and Gram-negative MDR bacterial strains and biofilm formation. Moreover, it has great stability in human serum thereby enhancing its antibacterial presence and activity without cytotoxicity in human cells. In conclusion, peptide γ2 is a promising new weapon also in the battle against intractable infectious diseases.


Asunto(s)
Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , beta-Defensinas/química , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana
14.
J Chem Inf Model ; 61(9): 4131-4138, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34519200

RESUMEN

Relative binding free energy calculations in drug design are becoming a useful tool in facilitating lead binding affinity optimization in a cost- and time-efficient manner. However, they have been limited by technical challenges such as the manual creation of large numbers of input files to set up, run, and analyze free energy simulations. In this Application Note, we describe FEPrepare, a novel web-based tool, which automates the setup procedure for relative binding FEP calculations for the dual-topology scheme of NAMD, one of the major MD engines, using OPLS-AA force field topology and parameter files. FEPrepare provides the user with all necessary files needed to run a FEP/MD simulation with NAMD. FEPrepare can be accessed and used at https://feprepare.vi-seem.eu/.


Asunto(s)
Internet , Simulación de Dinámica Molecular , Entropía , Fenómenos Físicos , Termodinámica
15.
J Enzyme Inhib Med Chem ; 36(1): 1874-1883, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34340614

RESUMEN

A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure-activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Biología Computacional/métodos , Isoenzimas/antagonistas & inhibidores , Quinazolinas/química , Sulfonamidas/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad , Sulfonamidas/química
16.
J Enzyme Inhib Med Chem ; 36(1): 1783-1797, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34340630

RESUMEN

Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer's disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.


Asunto(s)
Anhidrasas Carbónicas/efectos de los fármacos , Activadores de Enzimas/farmacología , Indoles/farmacología , Isoenzimas/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Anhidrasas Carbónicas/metabolismo , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Activadores de Enzimas/química , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Indoles/química , Isoenzimas/metabolismo , Microglía/citología , Microglía/efectos de los fármacos , Modelos Moleculares , Espectroscopía de Protones por Resonancia Magnética , Especificidad por Sustrato
17.
J Chem Inf Model ; 61(8): 3835-3845, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34270903

RESUMEN

Artificial intelligence (AI) algorithms are dramatically redefining the current drug discovery landscape by boosting the efficiency of its various steps. Still, their implementation often requires a certain level of expertise in AI paradigms and coding. This often prevents the use of these powerful methodologies by non-expert users involved in the design of new biologically active compounds. Here, the random matrix discriminant (RMD) algorithm, a high-performance AI method specifically tailored for the identification of new ligands, was implemented in a new fully automated tool, PyRMD. This ligand-based virtual screening tool can be trained using target bioactivity data directly downloaded from the ChEMBL repository without manual intervention. The software automatically splits the available training compounds into active and inactive sets and learns the distinctive chemical features responsible for the compounds' activity/inactivity. PyRMD was designed to easily screen millions of compounds in hours through an automated workflow and intuitive input files, allowing fine tuning of each parameter of the calculation. Additionally, PyRMD features a wealth of benchmark metrics, to accurately probe the model performance, which were used here to gauge its predictive potential and limitations. PyRMD is freely available on GitHub (https://github.com/cosconatilab/PyRMD) as an open-source tool.


Asunto(s)
Inteligencia Artificial , Programas Informáticos , Algoritmos , Descubrimiento de Drogas , Ligandos
18.
J Med Chem ; 64(12): 8579-8598, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34106711

RESUMEN

Novel anti-HIV agents are still needed to overcome resistance issues, in particular inhibitors acting against novel viral targets. The ribonuclease H (RNase H) function of the reverse transcriptase (RT) represents a validated and promising target, and no inhibitor has reached the clinical pipeline yet. Here, we present rationally designed non-diketo acid selective RNase H inhibitors (RHIs) based on the quinolinone scaffold starting from former dual integrase (IN)/RNase H quinolinonyl diketo acids. Several derivatives were synthesized and tested against RNase H and viral replication and found active at micromolar concentrations. Docking studies within the RNase H catalytic site, coupled with site-directed mutagenesis, and Mg2+ titration experiments demonstrated that our compounds coordinate the Mg2+ cofactor and interact with amino acids of the RNase H domain that are highly conserved among naïve and treatment-experienced patients. In general, the new inhibitors influenced also the polymerase activity of RT but were selective against RNase H vs the IN enzyme.


Asunto(s)
Fármacos Anti-VIH/farmacología , VIH-1/enzimología , Quinolonas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/metabolismo , Células HeLa , Humanos , Magnesio/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Quinolonas/síntesis química , Quinolonas/metabolismo , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/metabolismo , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/genética , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo , Replicación Viral/efectos de los fármacos
19.
Eur J Med Chem ; 220: 113490, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33975138

RESUMEN

Carbonic Anhydrases (CAs) are pharmaceutically relevant targets for the treatment of several disease conditions. The ubiquitous localization of these enzymes and the high homology shared by the different isoforms represent substantial impediments for the discovery of potential drugs devoid of off-target side effects. As a consequence, substantial efforts are still needed to allow for the full realization of the pharmacological potential of CA modulators. In this contribution, starting from our previous studies, we describe the synthesis of a set of new bicyclic tetrahydroindazoles featuring a secondary sulfonamide. Biological evaluation of the inhibitory activity against the hCA I, II, IV, and IX isoforms allowed drawing a structure-activity relationship profile that was rationalized through theoretical studies. This allowed dissecting the new molecules into the single portions influencing the zinc chelation properties and the selectivity profile thereby offering a new platform for the discovery of new isotype selective CA inhibitors.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Indazoles/farmacología , Sulfonamidas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Indazoles/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
20.
J Chem Inf Model ; 61(4): 2062-2073, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33784094

RESUMEN

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine protease employing our in-house database of peptide and non-peptide ligands characterized by different types of warheads acting as Michael acceptors. To this end, we employed the AutoDock4 docking software customized to predict the formation of a covalent adduct with the target protein. In vitro verification of the inhibition properties of the most promising candidates allowed us to identify two new lead inhibitors that will deserve further optimization. From the computational point of view, this work demonstrates the predictive power of AutoDock4 and suggests its application for the in silico screening of large chemical libraries of potential covalent binders against the SARS-CoV-2 Mpro enzyme.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/farmacología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...