Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Thromb Res ; 236: 179-190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460307

RESUMEN

Endothelialized in vitro models for cardiovascular disease have contributed greatly to our current understanding of the complex molecular mechanisms underlying thrombosis. To further elucidate these mechanisms, it is important to consider which fundamental aspects to incorporate into an in vitro model. In this review, we will focus on the design of in vitro endothelialized models of thrombosis. Expanding our understanding of the relation and interplay between the different pathways involved will rely in part on complex models that incorporate endothelial cells, blood, the extracellular matrix, and flow. Importantly, the use of tissue-specific endothelial cells will help in understanding the heterogeneity in thrombotic responses between different vascular beds. The dynamic and complex responses of endothelial cells to different shear rates underlines the importance of incorporating appropriate shear in in vitro models. Alterations in vascular extracellular matrix composition, availability of bioactive molecules, and gradients in concentration and composition of these molecules can all regulate the function of both endothelial cells and perivascular cells. Factors modulating these elements in in vitro models should therefore be considered carefully depending on the research question at hand. As the complexity of in vitro models increases, so can the variability. A bottom-up approach to designing such models will remain an important tool for researchers studying thrombosis. As new techniques are continuously being developed and new pathways are brought to light, research question-dependent considerations will have to be made regarding what aspects of thrombosis to include in in vitro models.


Asunto(s)
Células Endoteliales , Trombosis , Humanos , Células Endoteliales/metabolismo , Endotelio Vascular , Trombosis/metabolismo
2.
Res Pract Thromb Haemost ; 7(7): 102140, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37867586

RESUMEN

These illustrated capsules have been prepared by some speakers of State-of-the-Art talks and of original investigations, presented at the 5th European Platelet Network (EUPLAN) International Conference, which was held at the Università degli Studi di Milano (Italy) on September 28-30, 2022. The programme featured various state-of-the-art lectures and a selection of oral presentations covering a broad range of topics in platelet and megakaryocyte biology, from basic science to recent advances in clinical studies. As usual, the meeting brought together senior scientists and trainees in an informal atmosphere to discuss platelet science in person.

3.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409530

RESUMEN

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Asunto(s)
Arterias , Plaquetas , Quimiocinas , Activación Neutrófila , Neutrófilos , Trombosis , Plaquetas/inmunología , Plaquetas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Quimiocinas/metabolismo , Trombosis/inmunología , Ligando de CD40 , Neutrófilos/inmunología , Neutrófilos/metabolismo , Adhesión Celular , Humanos
5.
TH Open ; 5(4): e533-e542, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34901735

RESUMEN

The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, for example, chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in hemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using enzyme-linked immunosorbent assay and on the chemotaxis of THP-1 cells toward platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (CC motif) ligand 5 (CCL5) and chemokine (CXC motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, α IIb ß 3 and P2Y 12 inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y 12 inhibitor or a phosphodiesterase (PDE) inhibitor did not lead to an additive reduction in CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y 12 or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.

6.
Cells ; 10(8)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34440764

RESUMEN

OBJECTIVE: platelets possess not only haemostatic but also inflammatory properties, which combined are thought to play a detrimental role in thromboinflammatory diseases such as acute coronary syndromes and stroke. Phosphodiesterase (PDE) 3 and -5 inhibitors have demonstrated efficacy in secondary prevention of arterial thrombosis, partially mediated by their antiplatelet action. Yet it is unclear whether such inhibitors also affect platelets' inflammatory functions. Here, we aimed to examine the effect of the PDE3A inhibitor cilostazol and the PDE5 inhibitor tadalafil on platelet function in various aspects of thromboinflammation. Approach and results: cilostazol, but not tadalafil, delayed ex vivo platelet-dependent fibrin formation under whole blood flow over type I collagen at 1000 s-1. Similar results were obtained with blood from Pde3a deficient mice, indicating that cilostazol effects are mediated via PDE3A. Interestingly, cilostazol specifically reduced the release of phosphatidylserine-positive extracellular vesicles (EVs) from human platelets while not affecting total EV release. Both cilostazol and tadalafil reduced the interaction of human platelets with inflamed endothelium under arterial flow and the release of the chemokines CCL5 and CXCL4 from platelets. Moreover, cilostazol, but not tadalafil, reduced monocyte recruitment and platelet-monocyte interaction in vitro. CONCLUSIONS: this study demonstrated yet unrecognised roles for platelet PDE3A and platelet PDE5 in platelet procoagulant and proinflammatory responses.


Asunto(s)
Antiinflamatorios/farmacología , Plaquetas/efectos de los fármacos , Cilostazol/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fibrinolíticos/farmacología , Inhibidores de Fosfodiesterasa 3/farmacología , Activación Plaquetaria/efectos de los fármacos , Animales , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/enzimología , Plaquetas/inmunología , Células Cultivadas , Quimiocinas/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fibrina/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de Fosfodiesterasa 5/farmacología , Adhesividad Plaquetaria/efectos de los fármacos , Transducción de Señal , Tadalafilo/farmacología
7.
J Thromb Haemost ; 19(2): 582-587, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34396675

RESUMEN

In vitro flow-based assays are widely used to investigate the role of platelets and coagulation in hemostasis and thrombosis. Their main advantage over other assays relies on the fact that they integrate blood flow that regulates many aspects of platelet function, including adhesion, activation, and aggregation. Blood flow is also central in the regulation of coagulation through its ability to modulate the local concentrations of coagulation factors within and around thrombi. The most broadly used assay to study thrombus formation consists in perfusing whole blood over immobilized fibrillar collagen through a single channel, which helps to reproduce thrombus formation as it occurs in vivo after vascular injury, with platelets adhering, becoming activated, and forming a mural thrombus. This process can also be studied under conditions of thrombin generation, notably by recalcifying blood collected in sodium citrate. In this manuscript, we briefly discuss the advantages and limits of this broadly used "in vitro thrombus formation model." The main emphasis is on the description of the most recent developments regarding design of new flow models and new techniques, and how these may advance the landscape of in vitro studies into the formation of physiological or pathophysiological thrombi. Challenges linked to mimicking the formation of a hemostatic plug in a healthy vessel or a thrombus in diseased arteries and the complexity of reproducing the various aspects of venous thrombosis are discussed. Future directions are proposed to improve the physiological or pathophysiological relevance of current flow-based assays.


Asunto(s)
Hemostasis , Trombosis , Coagulación Sanguínea , Plaquetas , Humanos , Pruebas de Función Plaquetaria
8.
J Thromb Haemost ; 19(2): 588-595, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34396692

RESUMEN

Hemodynamics play a central role in hemostasis and thrombosis by affecting all aspects linked to platelet functions and coagulation. In vitro flow devices are extensively used in basic research, pharmacological studies, antiplatelet agent screening, and development of diagnostic tools. Because hemodynamic conditions vary tremendously throughout the vascular tree and among different (patho)physiological processes, it is important to use flow conditions based on relevant biorheological reference ranges. Surprisingly, it is particularly difficult to find a concise overview of relevant hemodynamic parameters in various human and mouse vessels. To our knowledge, this is the first time an inventory of flow conditions in healthy, non-diseased, human and mouse vessels has been created. The objective of providing such a repertoire is to aid researchers in the field of hemostasis and thrombosis in choosing rheological conditions relevant in in vitro flow experiments and to promote harmonization of flow-based assays to facilitate comparative evaluations between studies. With reference to the human, we discuss relevant similarities and discrepancies in wall shear rates in the mouse, which are typically one order of magnitude greater in agreement with allometric scaling laws between species. Importantly, we bring the attention of the researchers to the fact that the relevant range of average wall shear rates in human arteries where clinically relevant arterial thrombosis occurs may fall as low as 100 to 200 s-1, thus significantly overlapping with what are considered "venous" shear rates. The same range for the murine arteries used for arterial thrombosis models may significantly exceed 1000 s-1 reaching values considered to be "pathological."


Asunto(s)
Arterias , Hemodinámica , Animales , Comunicación , Hemostasis , Humanos , Ratones , Modelos Cardiovasculares , Estándares de Referencia , Estrés Mecánico
9.
Atherosclerosis ; 319: 132-141, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468314

RESUMEN

Atherosclerosis is an underlying cause of a broad array of cardiovascular diseases characterized by plaques, arterial wall thickening initiated by hyperlipidemia, pro-inflammatory signals, endothelial dysfunction and the influx of inflammatory cells. By still incompletely characterized mechanisms, these plaques can destabilize or erode, leading to thrombosis and blood vessel occlusion and becomes clinically manifest as angina pectoris, myocardial infarction (MI) or stroke. Among the several blood cell types that are involved in the development of atherosclerosis, the role of platelets during the thrombotic occlusion of ruptured or eroded plaques is well established and clinically exploited as evident by the extensive use of platelet inhibitors. However, there is increasing evidence that platelets are also involved in the earlier stages of atheroma development by exhibiting pro-inflammatory activities. The scope of this review is to describe the role of platelets in the initiation and propagation stages of atherosclerosis and beyond; in atherothrombotic complications.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Trombosis , Plaquetas , Humanos , Inhibidores de Agregación Plaquetaria
10.
EJHaem ; 2(4): 685-699, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35845214

RESUMEN

All irreversible Bruton tyrosine kinase (Btk) inhibitors including ibrutinib and acalabrutinib induce platelet dysfunction and increased bleeding risk. New reversible Btk inhibitors were developed, like MK-1026. The mechanism underlying increased bleeding tendency with Btk inhibitors remains unclear. We investigated the effects of ibrutinib, acalabrutinib and MK-1026 on platelet function in healthy volunteers, patients and Btk-deficient mice, together with off-target effects on tyrosine kinase phosphorylation. All inhibitors suppressed GPVI- and CLEC-2-mediated platelet aggregation, activation and secretion in a dose-dependent manner. Only ibrutinib inhibited thrombus formation on vWF-co-coated surfaces, while on collagen this was not affected. In blood from Btk-deficient mice, collagen-induced thrombus formation under flow was reduced, but preincubation with either inhibitor was without additional effects. MK-1026 showed less off-target effects upon GPVI-induced TK phosphorylation as compared to ibrutinib and acalabrutinib. In ibrutinib-treated patients, GPVI-stimulated platelet activation, and adhesion on vWF-co-coated surfaces were inhibited, while CLEC-2 stimulation induced variable responses. The dual inhibition of GPVI and CLEC-2 signalling by Btk inhibitors might account for the increased bleeding tendency, with ibrutinib causing more high-grade bleedings due to additional inhibition of platelet-vWF interaction. As MK-1026 showed less off-target effects and only affected activation of isolated platelets, it might be promising for future treatment.

11.
Atherosclerosis ; 310: 17-25, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32877806

RESUMEN

BACKGROUND AND AIMS: Platelets can release extracellular vesicles (EVs) upon stimulation with various agonists. Interestingly, platelets from patients with Glanzmann thrombasthenia have reduced EV release. These platelets lack functional αIIbß3 integrins, indicating that αIIbß3 integrin is critical in vesicle release. Integrin activation is central in platelet function and is associated with e.g. adhesion, aggregation and cytoskeletal rearrangement. However, while platelet activation pathways are widely known, the mechanisms underlying EV release remain uncharacterized. We investigated the role of integrin αIIbß3, phosphatidyl serine (PS) exposure, cytoskeletal rearrangement and their associated signalling pathways in EV release. METHODS: EVs were isolated from activated platelets. Platelet activation status was measured by multicolour flow cytometry. A panel of pharmacologic inhibitors was used to interfere in specific signalling pathways. EV release was quantified enzymatically based on membrane PS content and nanoparticle tracking analysis. In addition, real-time visualization of EV shedding with confocal microscopy and EVs with Cryo-TEM imaging was performed. RESULTS: Platelet activation with convulxin resulted in higher EV release than with activation by thrombin. Kinetic measurements indicated that EV release followed the pattern of αIIbß3 integrin activation and subsequent closure paralleled by PS exposure. Prevention of αIIbß3 activation with the inhibitor tirofiban dramatically suppressed EV release. Similar results were obtained using αIIbß3-deficient platelets from patients with Glanzmann thrombasthenia. Inhibition of actin cytoskeleton rearrangement decreased EV release, whereas inhibition of individual signalling targets upstream of cytoskeletal rearrangement showed no such effects. CONCLUSION: Platelet EV release requires three main events: integrin activation and closure, PS exposure, and cytoskeletal rearrangement.


Asunto(s)
Vesículas Extracelulares , Fosfatidilserinas , Plaquetas , Humanos , Integrina beta3 , Activación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria
12.
J Thromb Haemost ; 18(7): 1714-1727, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32297475

RESUMEN

BACKGROUND: Genome wide association studies (GWAS) identified SLC44A2 as a novel susceptibility gene for venous thrombosis (VT) and previous work established that SLC44A2 contributed to clot formation upon vascular injury. OBJECTIVE: To further investigate the role of SLC44A2 in VT by utilizing SLC44A2 deficient mice (Slc44a2-/- ) in two representative disease models. METHODS: Mice were included in a hypercoagulability model driven by siRNA-mediated hepatic gene silencing of anticoagulants Serpinc1 (antithrombin) and Proc (protein C) and a flow restriction (stenosis) model induced by partial ligation of the inferior vena cava. RESULTS: In the hypercoagulability model, no effect in onset was observed in Slc44a2-/- animals; however, a drop in plasma fibrinogen and von Willebrand factor coinciding with an increase in blood neutrophils was recorded. In the neutrophil dependent stenosis model after 48 hours, Slc44a2-/- mice had significantly smaller thrombi both in length and weight with less platelet accumulation as a percentage of the total thrombus area. During the initiation of thrombosis at 6 hours post-stenosis, Slc44a2-/- mice also had smaller thrombi both in length and weight, with circulating platelets remaining elevated in Slc44a2-/- animals. Platelet activation and aggregation under both static- and venous and arterial shear conditions were normal for blood from Slc44a2-/- mice. CONCLUSIONS: These studies corroborate the original GWAS findings and establish a contributing role for SLC44A2 during the initiation of VT, with indications that this may be related to platelet-neutrophil interaction. The precise mechanism however remains elusive and warrants further investigation.


Asunto(s)
Trombofilia , Trombosis de la Vena , Animales , Plaquetas , Constricción Patológica , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Membrana/genética , Ratones , Activación Plaquetaria , Trombofilia/genética , Trombosis de la Vena/genética
13.
Arterioscler Thromb Vasc Biol ; 40(3): e65-e77, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31893947

RESUMEN

OBJECTIVE: In patients with diabetes mellitus, increased platelet reactivity predicts cardiac events. Limited evidence suggests that DPP-4 (dipeptidyl peptidase 4) influences platelets via GLP-1 (glucagon-like peptide 1)-dependent effects. Because DPP-4 inhibitors are frequently used in diabetes mellitus to improve the GLP-1-regulated glucose metabolism, we characterized the role of DPP-4 inhibition and of native intact versus DPP-4-cleaved GLP-1 on flow-dependent thrombus formation in mouse and human blood. Approach and Results: An ex vivo whole blood microfluidics model was applied to approach in vivo thrombosis and study collagen-dependent platelet adhesion, activation, and thrombus formation under shear-flow conditions by multiparameter analyses. In mice, in vivo inhibition or genetic deficiency of DPP-4 (Dpp4-/-), but not of GLP-1-receptors (Glp1r-/-), suppressed flow-dependent platelet aggregation. In human blood, GLP-1(7-36), but not DPP-4-cleaved GLP-1(9-36), reduced thrombus volume by 32% and impaired whole blood thrombus formation at both low/venous and high/arterial wall-shear rates. These effects were enforced upon ADP costimulation and occurred independently of plasma factors and leukocytes. Human platelets did not contain detectable levels of GLP-1-receptor transcripts. Also, GLP-1(7-36) did not inhibit collagen-induced aggregation under conditions of stirring or stasis of platelets, pointing to a marked flow-dependent role. CONCLUSIONS: Native, intact GLP-1 is a natural suppressor of thrombus growth under physiological flow conditions, with DPP-4 inhibition and increased intact GLP-1 suppressing platelet aggregation under flow without a main relevance of GLP-1-receptor on platelets.


Asunto(s)
Plaquetas/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Fibrinolíticos/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Linagliptina/farmacología , Fosfato de Sitagliptina/farmacología , Trombosis/prevención & control , Animales , Plaquetas/metabolismo , Dipeptidil Peptidasa 4/genética , Péptido 1 Similar al Glucagón/análogos & derivados , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fragmentos de Péptidos/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal , Trombosis/enzimología , Trombosis/genética
14.
TH Open ; 3(3): e273-e285, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31511847

RESUMEN

The contributions of coagulation factor XI (FXI) and FXII to human clot formation is not fully known. Patients with deficiency in FXI have a variable mild bleeding risk, whereas FXII deficiency is not associated with bleeding. These phenotypes make FXII and FXI attractive target proteins in anticoagulant therapy. Here, we studied the mechanisms of fibrin clot formation, stability, and fibrinolytic degradation in patients with severe FXI or FXII deficiency. Thrombin generation was triggered in platelet-poor (PPP) and platelet-rich plasma (PRP) with the biological FXII trigger sulfatides. Intrinsic and extrinsic thrombus formation and degradation in whole blood were determined with rotational thromboelastometry (ROTEM). Clot formation under flow was assessed by perfusion of whole blood over collagen microspots with(out) tissue factor (TF). Thrombin generation and clot formation were delayed in FXII- and FXI-deficient patients triggered with sulfatides. In FXI-deficient plasma, this delay was more pronounced in PRP compared to PPP. In whole blood of FXII-deficient patients, clots were smaller but resistance to fibrinolysis was normal. In whole blood of FXI-deficient patients, clot formation was normal but the time to complete fibrinolysis was prolonged. In flow chamber experiments triggered with collagen/TF, platelet coverage was reduced in severe compared with moderate FXI deficiency, and fibrin formation was impaired. We conclude that quantitative defects in FXII and FXI have a substantial impact on contact activation-triggered coagulation. Furthermore, FXI deficiency has a dose-dependent suppressing effect on flow-mediated and platelet/TF-dependent clot formation. These last data highlight the contribution of particularly FXI to hemostasis.

15.
Blood ; 132(24): e35-e46, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30275110

RESUMEN

Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes.


Asunto(s)
Hemorragia , Trombosis , Animales , Modelos Animales de Enfermedad , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/patología , Humanos , Ratones , Ratones Noqueados , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología
16.
Thromb Haemost ; 118(3): 502-513, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29452445

RESUMEN

Tissue factor pathway inhibitor-alpha (TFPI-α) is a Kunitz-type serine protease inhibitor, which suppresses coagulation by inhibiting the tissue factor (TF)/factor VIIa complex as well as factor Xa. In static plasma-phospholipid systems, TFPI-α thus suppresses both factor Xa and thrombin generation. In this article, we used a microfluidics approach to investigate how TFPI-α regulates fibrin clot formation in platelet thrombi at low wall shear rate. We therefore hypothesized that the anticoagulant effect of TFPI-α in plasma is a function of the local procoagulant strength-defined as the magnitude of thrombin generation under flow, due to local activities of TF/factor VIIa and factor Xa. To test this hypothesis, we modulated local coagulation by microspot coating of flow channels with 0 to 100 pM TF/collagen, or by using blood from patients with haemophilia A or B. For blood or plasma from healthy subjects, blocking of TFPI-α enhanced fibrin formation, extending from a platelet thrombus, under flow only at <2 pM coated TF. This enhancement was paralleled by an increased thrombin generation. For mouse plasma, genetic deficiency in TFPI enhanced fibrin formation under flow also at 0 pM TF microspots. On the other hand, using blood from haemophilia A or B patients, TFPI-α antagonism markedly enhanced fibrin formation at microspots with up to 100 pM coated TF. We conclude that, under flow, TFPI-α is capable to antagonize fibrin formation in a manner dependent on and restricted by local TF/factor VIIa and factor Xa activities.


Asunto(s)
Plaquetas/efectos de los fármacos , Coagulantes/química , Factor VIIa/química , Factor Xa/química , Fibrina/química , Lipoproteínas/química , Animales , Anticoagulantes/química , Coagulación Sanguínea , Plaquetas/citología , Colágeno/química , Cruzamientos Genéticos , Femenino , Voluntarios Sanos , Hemofilia A/sangre , Hemofilia B/sangre , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Perfusión , Tromboplastina/química , Trombosis
17.
Haematologica ; 103(3): 540-549, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29242293

RESUMEN

In patients with dysfunctions of the Ca2+ channel ORAI1, stromal interaction molecule 1 (STIM1) or integrin-regulating kindlin-3 (FERMT3), severe immunodeficiency is frequently linked to abnormal platelet activity. In this paper, we studied platelet responsiveness by multiparameter assessment of whole blood thrombus formation under high-shear flow conditions in 9 patients, including relatives, with confirmed rare genetic mutations of ORAI1, STIM1 or FERMT3. In platelets isolated from 5 out of 6 patients with ORAI1 or STIM1 mutations, store-operated Ca2+ entry (SOCE) was either completely or partially defective compared to control platelets. Parameters of platelet adhesion and aggregation on collagen microspots were impaired for 4 out of 6 patients, in part related to a low platelet count. For 4 patients, platelet adhesion/aggregation and procoagulant activity on von Willebrand Factor (VWF)/rhodocytin and VWF/fibrinogen microspots were impaired independently of platelet count, and were partly correlated with SOCE deficiency. Measurement of thrombus formation at low shear rate confirmed a greater impairment of platelet functionality in the ORAI1 patients than in the STIM1 patient. For 3 patients/relatives with a FERMT3 mutation, all parameters of thrombus formation were strongly reduced regardless of the microspot. Bone marrow transplantation, required by 2 patients, resulted in overall improvement of platelet function. We concluded that multiparameter assessment of whole blood thrombus formation in a surface-dependent way can detect: i) additive effects of low platelet count and impaired platelet functionality; ii) aberrant ORAI1-mediated Ca2+ entry; iii) differences in platelet activation between patients carrying the same ORAI1 mutation; iv) severe platelet function impairment linked to a FERMT3 mutation and bleeding history.


Asunto(s)
Síndromes de Inmunodeficiencia/sangre , Activación Plaquetaria/genética , Calcio/metabolismo , Humanos , Síndromes de Inmunodeficiencia/genética , Proteínas de la Membrana/genética , Mutación , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Adhesividad Plaquetaria , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Molécula de Interacción Estromal 1/genética , Trombosis/etiología
18.
Blood ; 130(26): 2819-2828, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29018081

RESUMEN

Traditionally, in vitro flow chamber experiments and in vivo arterial thrombosis studies have been proved to be of vital importance to elucidate the mechanisms of platelet thrombus formation after vessel wall injury. In recent years, it has become clear that platelets also act as modulators of inflammatory processes, such as atherosclerosis. A key element herein is the complex cross talk between platelets, the coagulation system, leukocytes, and the activated endothelium. This review provides insight into the platelet-endothelial interface, based on in vitro flow chamber studies and cross referenced with in vivo thrombosis studies. The main mechanisms of platelet interaction with the activated endothelium encompass (1) platelet rolling via interaction of platelet glycoprotein Ib-IX-V with endothelial-released von Willebrand factor with a supporting role for the P-selectin/P-selectin glycoprotein ligand 1 axis, followed by (2) firm platelet adhesion to the endothelium via interaction of platelet αIIbß3 with endothelial αvß3 and intercellular adhesion molecule 1, and (3) a stimulatory role for thrombin, the thrombospondin-1/CD36 axis and cyclooxygenase 1 in subsequent platelet activation and stable thrombus formation. In addition, the molecular mechanisms underlying the stimulatory effect of platelets on leukocyte transendothelial migration, a key mediator of atheroprogression, are discussed. Throughout the review, emphasis is placed on recommendations for setting up, reporting, interpreting, and comparing endothelial-lined flow chamber studies and suggestions for future studies.


Asunto(s)
Plaquetas/metabolismo , Endotelio Vascular/metabolismo , Microfluídica/métodos , Migración Transendotelial y Transepitelial , Comunicación Celular/fisiología , Humanos , Microfluídica/tendencias , Receptor Cross-Talk/fisiología
19.
Mol Cell Proteomics ; 15(10): 3154-3169, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27535140

RESUMEN

The Scott syndrome is a very rare and likely underdiagnosed bleeding disorder associated with mutations in the gene encoding anoctamin-6. Platelets from Scott patients are impaired in various Ca2+-dependent responses, including phosphatidylserine exposure, integrin closure, intracellular protein cleavage, and cytoskeleton-dependent morphological changes. Given the central role of anoctamin-6 in the platelet procoagulant response, we used quantitative proteomics to understand the underlying molecular mechanisms and the complex phenotypic changes in Scott platelets compared with control platelets. Therefore, we applied an iTRAQ-based multi-pronged strategy to quantify changes in (1) the global proteome, (2) the phosphoproteome, and (3) proteolytic events between resting and stimulated Scott and control platelets. Our data indicate a limited number of proteins with decreased (70) or increased (64) expression in Scott platelets, among those we confirmed the absence of anoctamin-6 and the strong up-regulation of aquaporin-1 by parallel reaction monitoring. The quantification of 1566 phosphopeptides revealed major differences between Scott and control platelets after stimulation with thrombin/convulxin or ionomycin. In Scott platelets, phosphorylation levels of proteins regulating cytoskeletal or signaling events were increased. Finally, we quantified 1596 N-terminal peptides in activated Scott and control platelets, 180 of which we identified as calpain-regulated, whereas a distinct set of 23 neo-N termini was caspase-regulated. In Scott platelets, calpain-induced cleavage of cytoskeleton-linked and signaling proteins was downregulated, in accordance with an increased phosphorylation state. Thus, multipronged proteomic profiling of Scott platelets provides detailed insight into their protection against detrimental Ca2+-dependent changes that are normally associated with phosphatidylserine exposure.


Asunto(s)
Trastornos de la Coagulación Sanguínea/sangre , Plaquetas/fisiología , Fosfoproteínas/análisis , Proteómica/métodos , Trastornos de la Coagulación Sanguínea/metabolismo , Plaquetas/efectos de los fármacos , Calcio/metabolismo , Venenos de Crotálidos/farmacología , Regulación de la Expresión Génica , Humanos , Ionomicina/farmacología , Lectinas Tipo C , Fosfoproteínas/efectos de los fármacos , Proteolisis , Transducción de Señal , Trombina/farmacología
20.
Arterioscler Thromb Vasc Biol ; 36(4): 692-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26848157

RESUMEN

OBJECTIVE: Platelet- and fibrin-dependent thrombus formation is regulated by blood flow and exposure of collagen and tissue factor. However, interactions between these blood-borne and vascular components are not well understood. APPROACH AND RESULTS: Here, we developed a method to assess whole-blood thrombus formation on microspots with defined amounts of collagen and tissue factor, allowing determination of the mechanical properties and intrathrombus composition. Confining the collagen content resulted in diminished platelet deposition and fibrin formation at high shear flow conditions, but this effect was compensated by a larger thrombus size and increased accumulation of fibrin in the luminal regions of the thrombi at the expense of the base regions. These thrombi were more dependent on tissue factor-triggered thrombin generation. Microforce nanoindentation analysis revealed a significantly increased microelasticity of thrombi with luminal-oriented fibrin. At a low shear rate, fibrin fibers tended to luminally cover the thrombi, again resulting in a higher microelasticity. Studies with blood from patients with distinct hemostatic insufficiencies indicated an impairment in the formation of a platelet-fibrin thrombus in the cases of dilutional coagulopathy, thrombocytopenia, Scott syndrome, and hemophilia B. CONCLUSIONS: Taken together, our data indicate that (1) thrombin increases the platelet thrombus volume; (2) tissue factor drives the formation of fibrin outside of the platelet thrombus; (3) limitation of platelet adhesion redirects fibrin from bottom to top of the thrombus; (4) a lower shear rate promotes thrombus coverage with fibrin; (5) the fibrin distribution pattern determines thrombus microelasticity; and (6) the thrombus-forming process is reduced in patients with diverse hemostatic defects.


Asunto(s)
Coagulación Sanguínea , Plaquetas/metabolismo , Fibrina/metabolismo , Trombosis/sangre , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/fisiopatología , Pruebas de Coagulación Sanguínea , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Colágeno/sangre , Elasticidad , Hemofilia B/sangre , Hemofilia B/fisiopatología , Humanos , Flujo Sanguíneo Regional , Trombocitopenia/sangre , Trombocitopenia/fisiopatología , Tromboplastina/metabolismo , Trombosis/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...