Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 372: 255-265, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29337237

RESUMEN

Schwann cells (SCs) play a key role in peripheral nerve regeneration. After damage, they respond acquiring a repair phenotype that allows them to proliferate, migrate and redirect axonal growth. Previous studies have shown that Uridine-5'-Triphosphate (UTP) and its purinergic receptors participate in several pathophysiological responses in the nervous system. Our group has previously described how UTP induces the migration of a Schwannoma cell line and promotes wound healing. These data suggest that UTP participates in the signaling involved in the regeneration process. In the present study we evaluated UTP effects in isolated rat SCs and cocultures of SCs and dorsal root ganglia neurons. UTP reduced cAMP-dependent Krox-20 induction in SCs. UTP also reduced the N-cadherin re-expression that occurs when SCs and axons make contact. In myelinating cocultures, a non-significant tendency to a lower expression of P0 and MAG proteins in presence of UTP was observed. We also demonstrated that UTP induced SC migration without affecting cell proliferation. Interestingly, UTP was found to block neuregulin-induced phosphorylation of the ErbB3 receptor, a pathway involved in the regeneration process. These results indicate that UTP could acts as a brake to the differentiation signals, promoting a more migratory state in the repair-SCs.


Asunto(s)
Fármacos del Sistema Nervioso Periférico/farmacología , Células de Schwann/efectos de los fármacos , Uridina Trifosfato/farmacología , Animales , Axones/metabolismo , Cadherinas/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , AMP Cíclico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Ganglios Espinales/metabolismo , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Receptor ErbB-3/metabolismo , Células de Schwann/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
Biochim Biophys Acta ; 1863(7 Pt A): 1510-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27085739

RESUMEN

Schwann cell migration is essential during the regenerative response to nerve injury, however, the factors that regulate this phenomenon are not yet clear. Here we describe that retinoic acid (RA), whose production and signaling activity are greatly enhanced during nerve regeneration, increases Schwann cell migration. This is accompanied by the up-regulation of NEDD9, a member of the CAS family of scaffold proteins previously implicated in migratory and invasive behavior in gliomas, melanomas and the neural crest cells from which Schwann cells derive. This RA-induced NEDD9 accumulation is due to augmented mRNA levels, as well as an increase of NEDD9 protein stability. Although all NEDD9 phospho-isoforms present in Schwann cells are induced by the retinoid, the hormone also changes its phosphorylation status, thus altering the ratio between the different isoforms. Silencing NEDD9 in Schwann cells had no effect on basal migratory ability, but completely abrogated RA-induced enhanced migration. Collectively, our results indicate that RA could be a major regulator of Schwann cell migration after nerve injury, thus offering a new insight into peripheral nerve repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Células de Schwann/efectos de los fármacos , Transcripción Genética , Activación Transcripcional , Tretinoina/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Proteínas del Citoesqueleto , Relación Dosis-Respuesta a Droga , Proteínas con Dominio LIM , Proteínas de Microfilamentos , Oxigenasas de Función Mixta , Fosforilación , Estabilidad Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , Ratas , Células de Schwann/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Regulación hacia Arriba
3.
PLoS One ; 6(2): e17023, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21386894

RESUMEN

BACKGROUND: Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-γ depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-γ mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-ß mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. CONCLUSIONS/SIGNIFICANCE: All together, our results show that retinoid receptors are regulated in a complex manner in Schwann cells, suggesting that they could have a prominent role as regulators of Schwann cell physiology.


Asunto(s)
Comunicación Celular/fisiología , Terminales Presinápticos/fisiología , Receptores de Ácido Retinoico/genética , Células de Schwann , Tretinoina/farmacología , Animales , Animales Recién Nacidos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Terminales Presinápticos/metabolismo , Ratas , Ratas Wistar , Receptores de Ácido Retinoico/metabolismo , Receptor gamma X Retinoide/genética , Receptor gamma X Retinoide/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/fisiología , Tretinoina/metabolismo
4.
Glia ; 58(12): 1451-64, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20648638

RESUMEN

Understanding the mechanisms that control myelin formation is essential for the development of demyelinating diseases treatments. All-trans-retinoic acid (RA) plays an essential role during the development of the nervous system as a potent regulator of morphogenesis, cell growth, and differentiation. In this study, we show that RA is also a potent inhibitor of peripheral nervous system (PNS) myelination. RA acts through its binding to RA receptors (RAR) and retinoid X receptors (RXR), two members of the superfamily of nuclear receptors that act as ligand-dependent transcription factors. Schwann cells (SCs) express all retinoid receptors during the relevant stages of myelin formation. Through the activation of RXR, RA produces an upregulation of Krox20, a SC-specific regulatory transcription factor that plays a central role during myelination. Krox20 upregulation translates into Mbp and Mpz overexpression, therefore blocking myelin formation. This increase in myelin protein expression is accompanied by the induction of an adaptive ER stress response. At the same time, through a RAR-dependent mechanism, RA downregulates myelin-associated glycoprotein, which also contributes to the dysmyelinating effect of the retinoid.


Asunto(s)
Antineoplásicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Vaina de Mielina/metabolismo , Células de Schwann/efectos de los fármacos , Nervio Ciático/citología , Tretinoina/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Antineoplásicos/metabolismo , Compuestos Azo , Benzoatos/farmacología , Células Cultivadas , Técnicas de Cocultivo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Embrión de Mamíferos , Ganglios Espinales/citología , Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/genética , Naftalenos , Proteínas de Neurofilamentos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ácidos Nicotínicos/farmacología , Oligopéptidos/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/antagonistas & inhibidores , Receptores X Retinoide/metabolismo , Retinoides/farmacología , Nervio Ciático/crecimiento & desarrollo , Tetrahidronaftalenos/farmacología , Factor de Transcripción CHOP/metabolismo , Tretinoina/metabolismo
5.
Mol Biol Cell ; 15(12): 5583-92, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15371543

RESUMEN

Retinoic acid (RA) is a potent regulator of neuronal cell differentiation. RA normally activates gene expression by binding to nuclear receptors that interact with response elements (RAREs) in regulatory regions of target genes. We show here that in PC12 cell subclones in which the retinoid causes neurite extension, RA induces a rapid and sustained phosphorylation of CREB (cyclic AMP response element binding protein), compatible with a nongenomic effect. RA also causes a rapid increase of CREB phosphorylation in primary cultures of cerebrocortical cells and of dorsal root ganglia neurons from rat embryos. RA-mediated phosphorylation of CREB leads to a direct stimulation of CREB-dependent transcriptional activity and to activation of the expression of genes such as c-fos, which do not contain RAREs but contain cAMP response elements (CREs) in their promoters. CREB is a major target of extracellular signal regulated kinase ERK1/2 signaling in neuronal cells, and we demonstrate here that RA induces an early stimulation of ERK1/2, which is required both for CREB phosphorylation and transcriptional activity. These results demonstrate that RA, by a nongenomic mechanism, stimulates signaling pathways that lead to phosphorylation of transcription factors, which in turn activate the transcription of genes involved in neuronal differentiation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas/citología , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Elementos de Respuesta/genética , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...