Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Adv ; 2(16): 5494-5500, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34458848

RESUMEN

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel Zn1.2Co1.8O3.5 offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides. Based on that, we manufacture off-stoichiometric conducting p-spinel catalytic anodes on tetragonal Ti, Au-Ti and hexagonal Al-doped ZnO carriers and report the evolution of O2 at Tafel slopes between 40.5 and 48 mV dec-1 and at overpotentials between 0.35 and 0.43 V (at 10 mA cm-2). The anodic stability, i.e., 50 h of continuous O2 electrolysis in 1 M KOH, suggests that increasing the conductivity is advantageous for electrolysis, particularly for reducing the ohmic losses and ensuring activity across the entire surface. We conclude by pointing out the merits of improving p-doping in Zn-Co spinels by optimized growth on a tetragonal Ti-carrier and their application as dimension-stable 3d-metal anodes.

2.
Adv Mater ; 32(25): e1902177, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32419235

RESUMEN

The most active and efficient catalysts for the electrochemical hydrogen evolution reaction (HER) rely on platinum, a fact that increases the cost of producing hydrogen and thereby limits the widespread adoption of this fuel. Here, a metal-free organic electrocatalyst that mimics the platinum surface by implementing a high work function and incorporating hydrogen-affine hydrogen bonds is introduced. These motifs, inspired from enzymology, are deployed here as selective reaction centres. It is shown that the keto-amine hydrogen-bond motif enhances the rate-determining step in proton reduction to molecular hydrogen. The keto-amine-functionalized polymers reported herein evolve hydrogen at an overpotential of 190 mV. They share certain key properties with platinum: a similar work function and excellent electrochemical stability and chemical robustness. These properties allow the demonstration of one week of continuous HER operation without notable degradation nor delamination from the carrier electrode. Scaled continuous-flow electrolysis is reported and 1 L net molecular hydrogen is produced within less than 9 h using 2.3 mg of polymer electrocatalyst.

3.
Nat Commun ; 10(1): 3864, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455766

RESUMEN

Electrochemical conversion of CO2 to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high-energy fuels. The challenge lies in the catalyst design to enable its real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) triphenylphosphine corrole complex, which contains three polyethylene glycol residues attached at the meso-phenyl groups. Electron-donation and therefore reduction of the cobalt from cobalt(III) to cobalt(I) is accompanied by removal of the axial ligand, thus resulting in a square-planar cobalt(I) complex. The cobalt(I) as an electron-rich supernucleophilic d8-configurated metal centre, where two electrons occupy and fill up the antibonding dz2 orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metals reactions with carbon dioxide. Herein, we report the potential dependent heterogeneous electroreduction of CO2 to ethanol or methanol of an immobilized cobalt A3-corrole catalyst system. In moderately acidic aqueous medium (pH = 6.0), the cobalt corrole modified carbon paper electrode exhibits a Faradaic Efficiency (FE%) of 48 % towards ethanol production.

4.
Sci Adv ; 3(8): e1700686, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28798958

RESUMEN

Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm-2 at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm-1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications.

5.
ACS Appl Mater Interfaces ; 8(46): 31695-31701, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27802019

RESUMEN

The current study reports the application of chalcopyrite semiconductor CuInS2 (CIS) nanofibers for the reduction of CO2 to CO with a remarkable Faradaic efficiency of 77 ± 4%. Initially the synthesis of CuInS2 nanofibers was carried out by adaptable electrospinning technique. To reduce the imperfection in the crystalline fiber, polyacrylonitrile (PAN) was selected as template polymer. Afterward, the desired chemical structure of nanofibers was achieved through sulfurization process. Making continuous CuInS2 nanofibers on the cathode surface by the electrospinning method brings the advantages of being economical, environmentally safe, and versatile. The obtained nanofibers of well investigated size and diameter according to the SEM (scanning electron microscope) were used in electrochemical studies. An improvement of Faradaic efficiency was achieved with the catalytic active CuInS2 in nanofibrous structure as compared to the solution processed CuInS2. This underlines the important effect of the electrode fabrication on the catalytic performance. Being less contaminated as compared to solution processing, and having a well-defined composition and increased catalytically active area, the CuInS2 nanofiber electrodes prepared by the electrospinning technique show a 4 times higher Faradaic efficiency. Furthermore, in this study, attention was paid to the stability of the CuInS2 nanofiber electrodes. The electrochemical reduction of CO2 to CO by using CIS nanofibers coated onto FTO electrodes was carried out for 10 h in total. The observed current density of 0.22 mA cm-2 and the stability of CIS nanofiber electrodes are found to be competitive with other heterogeneous electrocatalysts. Hence, we believe that the fabrication and application of nanofibrous materials through the electrospinning technique might be of interest for electrocatalytic studies in CO2 reduction.

6.
Org Electron ; 15(12): 3521-3528, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25642158

RESUMEN

Diketopyrrolopyrroles (DPPs) have recently gained attention as building-blocks for organic semiconducting polymers and small molecules, however the semiconducting properties of their hydrogen-bonded (H-bonded) pigment forms have not been explored. Herein we report on the performance of three archetypical H-bonded DPP pigments, which show ambipolar carrier mobilities in the range 0.01-0.06 cm2/V s in organic field-effect transistors. Their semiconducting properties are correlated with crystal structure, where an H-bonded crystal lattice supports close and relatively cofacial π-π stacking. To better understand transport in these systems, density functional theory calculations were carried out, indicating theoretical maximum ambipolar mobility values of ∼0.3 cm2/V s. Based on these experimental and theoretical results, H-bonded DPPs represent a viable alternative to more established DPP-containing polymers and small molecules where H-bonding is blocked by N-alkylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA