Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(11): 13217-13228, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32091196

RESUMEN

Polarity-controlled growth of ZnO by chemical bath deposition provides a method for controlling the crystal orientation of vertical nanorod arrays. The ability to define the morphology and structure of the nanorods is essential to maximizing the performance of optical and electrical devices such as piezoelectric nanogenerators; however, well-defined Schottky contacts to the polar facets of the structures have yet to be explored. In this work, we demonstrate a process to fabricate metal-semiconductor-metal device structures from vertical arrays with Au contacts on the uppermost polar facets of the nanorods and show that the O-polar nanorods (∼0.44 eV) have a greater effective barrier height than the Zn-polar nanorods (∼0.37 eV). Oxygen plasma treatment is shown by cathodoluminescence spectroscopy to affect midgap defects associated with radiative emissions, which improves the Schottky contacts from weakly rectifying to strongly rectifying. Interestingly, the plasma treatment is shown to have a much greater effect in reducing the number of carriers in O-polar nanorods through quenching of the donor-type substitutional hydrogen on oxygen sites (HO) when compared to the zinc-vacancy-related hydrogen defect complexes (VZn-nH) in Zn-polar nanorods that evolve to lower-coordinated complexes. The effect on HO in the O-polar nanorods coincides with a large reduction in the visible-range defects, producing a lower conductivity and creating the larger effective barrier heights. This combination can allow radiative losses and charge leakage to be controlled, enhancing devices such as dynamic photodetectors, strain sensors, and light-emitting diodes while showing that the O-polar nanorods can outperform Zn-polar nanorods in such applications.

2.
Nanotechnology ; 30(36): 362001, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31051478

RESUMEN

As an abundant and non-toxic wide band gap semiconductor with a high electron mobility, ZnO in the form of nanowires (NWs) has emerged as an important electron transporting material in a vast number of nanostructured solar cells. ZnO NWs are grown by low-cost chemical deposition techniques and their integration into solar cells presents, in principle, significant advantages including efficient optical absorption through light trapping phenomena and enhanced charge carrier separation and collection. However, they also raise some significant issues related to the control of the interface properties and to the technological integration. The present review is intended to report a detailed analysis of the state-of-the-art of all types of nanostructured solar cells integrating ZnO NWs, including extremely thin absorber solar cells, quantum dot solar cells, dye-sensitized solar cells, organic and hybrid solar cells, as well as halide perovskite-based solar cells.

3.
Nanotechnology ; 29(47): 475601, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30251706

RESUMEN

Controlling the formation of ZnO nanowire (NW) arrays on a wide variety of substrates is crucial for their efficient integration into nanoscale devices. While their nucleation and growth by chemical bath deposition (CBD) have intensively been investigated on non-polar and polar c-plane ZnO surfaces, their formation on alternatively oriented ZnO surfaces has not been addressed yet. In this work, the standard CBD technique of ZnO is investigated on [Formula: see text] and [Formula: see text] semipolar ZnO single crystal surfaces. A uniform nanostructured layer consisting of tilted ZnO NWs is formed on the [Formula: see text] surface while elongated nanostructures are coalesced into a two-dimensional compact layer on the [Formula: see text] surface. By further combining the CBD with selective area growth (SAG) using electron beam-assisted lithography, highly tilted well-ordered ZnO NWs with high structural uniformity are grown on the [Formula: see text] patterned surface. The structural analysis reveals that ZnO NWs are homoepitaxially grown along the polar c-axis. The occurrence of quasi-transverse and -longitudinal optical phonon modes in Raman spectra is detected and their origin and position are explained in the framework of the Loudon's model. These results highlight the possibility to form ZnO NWs on original semipolar ZnO surfaces. It also opens the way for comprehensively understanding the nucleation and growth of ZnO NW arrays on poorly and highly textured polycrystalline ZnO seed layers composed of nanoparticles with a wide range of non-polar, semipolar, and polar plane orientations. Eventually, the possibility to tune both the inclination and dimensions of well-ordered ZnO NW arrays by using SAG on semipolar surfaces is noteworthy for photonic and optoelectronic nanoscale devices.

4.
Langmuir ; 33(25): 6269-6279, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28556662

RESUMEN

Polarity is known to affect the growth and properties of ZnO single crystals and epitaxial films, but its effects are mostly unknown in ZnO nanorods. To leave polarity as the only varying parameter, ZnO nanorods are grown by chemical bath deposition under identical conditions and during the same run on O- and Zn-polar ZnO single crystals patterned by electron beam lithography with the same pattern consisting of 15 different domains. The resulting well-ordered O- and Zn-polar ZnO nanorod arrays with high structural uniformity are formed on all the domains. The comparison of their typical dimensions unambiguously reveals that Zn-polar ZnO nanorods have much higher growth rates than O-polar ZnO nanorods for all the hole diameter and period combinations. The distinct growth rates are explained in the framework of the surface reaction-/diffusive transport-limited elongation regime analysis, which yields a much larger surface reaction rate constant for Zn-polar ZnO nanorods. The origin of the difference is attributed to polarity-dependent dangling bond configurations at the top polar c-faces of ZnO nanorods, which may further be affected by polarity-dependent interactions with the ionic species in aqueous solution. These findings show the relevance of considering polarity as an important quantity in ZnO nanorods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA