Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 17(3): e3000057, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30917109

RESUMEN

Cells in developing organisms are subjected to particular mechanical forces that shape tissues and instruct cell fate decisions. How these forces are sensed and transmitted at the molecular level is therefore an important question, one that has mainly been investigated in cultured cells in vitro. Here, we elucidate how mechanical forces are transmitted in an intact organism. We studied Drosophila muscle attachment sites, which experience high mechanical forces during development and require integrin-mediated adhesion for stable attachment to tendons. Therefore, we quantified molecular forces across the essential integrin-binding protein Talin, which links integrin to the actin cytoskeleton. Generating flies expressing 3 Förster resonance energy transfer (FRET)-based Talin tension sensors reporting different force levels between 1 and 11 piconewton (pN) enabled us to quantify physiologically relevant molecular forces. By measuring primary Drosophila muscle cells, we demonstrate that Drosophila Talin experiences mechanical forces in cell culture that are similar to those previously reported for Talin in mammalian cell lines. However, in vivo force measurements at developing flight muscle attachment sites revealed that average forces across Talin are comparatively low and decrease even further while attachments mature and tissue-level tension remains high. Concomitantly, the Talin concentration at attachment sites increases 5-fold as quantified by fluorescence correlation spectroscopy (FCS), suggesting that only a small proportion of Talin molecules are mechanically engaged at any given time. Reducing Talin levels at late stages of muscle development results in muscle-tendon rupture in the adult fly, likely as a result of active muscle contractions. We therefore propose that a large pool of adhesion molecules is required to share high tissue forces. As a result, less than 15% of the molecules experience detectable forces at developing muscle attachment sites at the same time. Our findings define an important new concept of how cells can adapt to changes in tissue mechanics to prevent mechanical failure in vivo.


Asunto(s)
Desarrollo de Músculos/fisiología , Sarcómeros/metabolismo , Talina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Western Blotting , Células Cultivadas , Drosophila , Matriz Extracelular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Integrinas/genética , Integrinas/metabolismo , Masculino , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Unión Proteica , Talina/genética , Tendones/metabolismo
2.
Curr Protoc Cell Biol ; 83(1): e85, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30865383

RESUMEN

Genetically encoded Förster resonance energy transfer (FRET)-based tension sensors measure piconewton-scale forces across individual molecules in living cells or whole organisms. These biosensors show comparably high FRET efficiencies in the absence of tension, but FRET quickly decreases when forces are applied. In this article, we describe how such biosensors can be generated for a specific protein of interest, and we discuss controls to confirm that the observed differences in FRET efficiency reflect changes in molecular tension. These FRET efficiency changes can be related to mechanical forces as the FRET-force relationship of the employed tension sensor modules are calibrated. We provide information on construct generation, expression in cells, and image acquisition using live-cell fluorescence lifetime imaging microscopy (FLIM). Moreover, we describe how to analyze, statistically evaluate, and interpret the resulting data sets. Together, these protocols should enable the reader to plan, execute, and interpret FRET-based tension sensor experiments. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia/métodos , ADN/química , Escherichia coli/genética , Técnicas de Amplificación de Ácido Nucleico , Transformación Genética
3.
Nat Commun ; 9(1): 5284, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538252

RESUMEN

Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mammalian tissues. Mutations in desmosomal proteins cause severe human pathologies including epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-bearing nature is lacking. Here we develop Förster resonance energy transfer (FRET)-based tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal that desmoplakin does not experience significant tension under most conditions, but instead becomes mechanically loaded when cells are exposed to external mechanical stresses. Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and orientation of the applied tissue deformation, consistent with a stress absorbing function for desmosomes that is distinct from previously analyzed cell adhesion complexes.


Asunto(s)
Desmosomas/química , Animales , Adhesión Celular , Citoesqueleto/química , Citoesqueleto/metabolismo , Desmoplaquinas/química , Desmoplaquinas/metabolismo , Desmosomas/metabolismo , Perros , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Células de Riñón Canino Madin Darby , Estrés Mecánico
4.
Nat Methods ; 14(11): 1090-1096, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945706

RESUMEN

Förster resonance energy transfer (FRET)-based tension sensor modules (TSMs) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET-based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3-5 pN. In addition, we present a method allowing the simultaneous evaluation of coexpressed tension sensor constructs using two-color fluorescence lifetime microscopy. Finally, we introduce a procedure to calculate the fraction of mechanically engaged molecules within cells. Application of these techniques to new talin biosensors reveals an intramolecular tension gradient across talin-1 that is established upon integrin-mediated cell adhesion. The tension gradient is actomyosin- and vinculin-dependent and sensitive to the rigidity of the extracellular environment.


Asunto(s)
Talina/química , Calibración , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales/química , Microscopía Fluorescente , Miosinas/química
5.
Trends Cell Biol ; 26(11): 838-847, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27544876

RESUMEN

The development of calibrated Förster resonance energy transfer (FRET)-based tension sensors has allowed the first analyses of mechanical processes with piconewton (pN) sensitivity in cells. Here, we introduce the working principle of this emerging microscopy method and discuss how it has been utilized to obtain quantitative insights into the mechanisms of intracellular force transduction in cell-matrix adhesions, cell-cell junctions, and at the cell cortex. These examples demonstrate that genetically encoded tension sensors are powerful tools to unravel force transduction mechanisms, but also indicate current limitations. We propose that further technical improvements are needed to develop a truly molecular understanding of mechanobiological processes in cells and tissues.


Asunto(s)
Células/metabolismo , Fenómenos Biomecánicos , Calibración , Adhesión Celular , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Biológicos
6.
Cell Mol Bioeng ; 8(1): 96-105, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798203

RESUMEN

The ability of cells to sense and respond to mechanical forces is central to a wide range of biological processes and plays an important role in numerous pathologies. The molecular mechanisms underlying cellular mechanotransduction, however, have remained largely elusive because suitable methods to investigate subcellular force propagation were missing. Here, we review recent advances in the development of biosensors that allow molecular force measurements. We describe the underlying principle of currently available techniques and propose a strategy to systematically evaluate new Förster resonance energy transfer (FRET)-based biosensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA