RESUMEN
Alkylamides are secondary metabolites in Acmella oleracea and display wide applications in treating several diseases. Since alkylamides can inhibit pain, this work aims to evaluate the antinociceptive profile of A. Oleracea methanolic extracts used in vivo and in silico assays. The extracts inhibited the neurogenic and inflammatory phases of the formalin test, ratifying the antinociceptive effect of alkylamides. Furthermore, the results from molecular docking demonstrated the interaction of A. oleracea alkylamides with the CB1/CB2 and TRPV1 receptors. Additionally, the crude methanolic extract of flowers did not induce potential side effects related to the classical cannabinoid tetrad: hypolocomotion and catalepsy. In conclusion, this work confirms the potential of the alkylamides of A. Oleracea as antinociceptive agents and, for the first time, correlates its effects with the endocannabinoid and vanilloid systems through in silico assays.
RESUMEN
The novel coronavirus SARS-CoV-2 has been affecting the world, causing severe pneumonia and acute respiratory syndrome, leading people to death. Therefore, the search for anti-SARS-CoV-2 compounds is pivotal for public health. Natural products may present sources of bioactive compounds; among them, flavonoids are known in literature for their antiviral activity. Siparuna species are used in Brazilian folk medicine for the treatment of colds and flu. This work describes the isolation of 3,3',4'-tri-O-methyl-quercetin, 3,7,3',4'-tetra-O-methyl-quercetin (retusin), and 3,7-di-O-methyl-kaempferol (kumatakenin) from the dichloromethane extract of leaves of Siparuna cristata (Poepp. & Endl.) A.DC., Siparunaceae, using high-speed countercurrent chromatography in addition to the investigation of their inhibitory effect against SARS-CoV-2 viral replication. Retusin and kumatakenin inhibited SARS-CoV-2 replication in Vero E6 and Calu-3 cells, with a selective index greater than lopinavir/ritonavir and chloroquine, used as control. Flavonoids and their derivatives may stand for target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s43450-021-00162-5.
RESUMEN
ABSTRACT This work describes the isolation, by high-speed counter-current chromatography, of the diterpenes manool, jhanol and steviol and the benzaldehyde p-oxy-2-ethylhexyl benzaldehyde from the stilt roots hexane extract of the mangrove plant Rhizophora mangle L., Rhizophoraceae. For this, a non-aqueous biphasic solvent system composed of hexane–acetonitrile–methanol 1:1:0.5 (v/v/v) was applied. As far as we know, only steviol was previously isolated in Rhizophoraceae and this is the first time that p-oxy-2-ethylhexyl benzaldehyde is reported.