Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35630535

RESUMEN

Biomineral formation is a common trait and prominent for soil Actinobacteria, including the genus Streptomyces. We investigated the formation of nickel-containing biominerals in the presence of a heavy-metal-resistant Streptomyces mirabilis P16B-1. Biomineralization was found to occur both in solid and liquid media. Minerals were identified with Raman spectroscopy and TEM-EDX to be either Mg-containing struvite produced in media containing no nickel, or Ni-struvite where Ni replaces the Mg when nickel was present in sufficient concentrations in the media. The precipitation of Ni-struvite reduced the concentration of nickel available in the medium. Therefore, Ni-struvite precipitation is an efficient mechanism for tolerance to nickel. We discuss the contribution of a plasmid-encoded nickel efflux transporter in aiding biomineralization. In the elevated local concentrations of Ni surrounding the cells carrying this plasmid, more biominerals occurred supporting this point of view. The biominerals formed have been quantified, showing that the conditions of growth do influence mineralization. This control is also visible in differences observed to biosynthetically synthesized Ni-struvites, including the use of sterile-filtered culture supernatant. The use of the wildtype S. mirabilis P16B-1 and its plasmid-free derivative, as well as a metal-sensitive recipient, S. lividans, and the same transformed with the plasmid, allowed us to access genetic factors involved in this partial control of biomineral formation.


Asunto(s)
Metales Pesados , Streptomyces , Biomineralización , Níquel/química , Streptomyces/genética , Estruvita
2.
Braz J Microbiol ; 52(4): 1825-1833, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34435341

RESUMEN

Paenibacillus elgii AC13 produces antimicrobial lipopeptides of agricultural and pharmaceutical importance. It secretes four cyclic lipopeptides named pelgipeptins, previously characterized in P. elgii B69. These lipopeptides result from the expression of a nonribosomal peptide gene cluster. P. elgii AC13 also produced two linear lipopeptides with ratios of [M + H] + 1105 and 1119 m/z. These compounds were previously observed in Paenibacillus sp. strain OSY-N, but due to purification difficulties, their characterization was executed using synthetically produced linear pelgipeptins. In the present study, purification was achieved from the supernatants of cultures from three complex media by high-performance liquid chromatography. The partial characterization of linear pelgipeptins revealed the similar antimicrobial activity and cytotoxicity of their synthetically produced counterparts, known as paenipeptins. Cyclic forms were highly stable to changes in pH, temperature, and organic extraction with n-butanol as shown by mass spectrometry (MALDI-TOF); therefore, these steps did not cause the hydrolysis of pelgipeptins. A low-activity thioesterase could also generate the linear isoforms observed; this enzyme catalyzes the cyclization process and is coded in the same gene cluster. Alternatively, the cyclic forms were hydrolyzed by an unknown protease produced during growth in the complex medium used in the present study. Although culture conditions are known to produce pelgipeptins with different yields and amino acid compositions, the occurrence of linear and cyclic forms simultaneously has not yet been reported. A mixture of cyclic and linear pelgipeptins presents a potential advantage of the higher antimicrobial activity of cyclic forms combined with the lower cytotoxicity of linear isoforms.


Asunto(s)
Lipopéptidos , Paenibacillus , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Lipopéptidos/química , Lipopéptidos/genética , Lipopéptidos/aislamiento & purificación , Lipopéptidos/farmacología , Paenibacillus/química , Paenibacillus/genética
3.
Microorganisms ; 10(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35056528

RESUMEN

The adaptation to adverse environmental conditions can lead to adapted microbial communities that may be screened for mechanisms involved in halophily and, in this case, metal tolerance. At a former uranium mining and milling site in Seelingstädt, Germany, microbial communities from surface waters and sediment soils were screened for isolates surviving high salt and metal concentrations. The high salt contents consisted mainly of chloride and sulfate, both in soil and riverbed sediment samples, accompanied by high metal loads with presence of cesium and strontium. The community structure was dominated by Chloroflexi, Proteobacteria and Acidobacteriota, while only at the highest contaminations did Firmicutes and Desulfobacterota reach appreciable percentages in the DNA-based community analysis. The extreme conditions providing high stress were mirrored by low numbers of cultivable strains. Thirty-four extremely halotolerant bacteria (23 Bacillus sp. and another 4 Bacillales, 5 Actinobacteria, and 1 Gamma-Proteobacterium) surviving 25 to 100 mM SrCl2, CsCl, and Cs2SO4 were further analyzed. Mineral formation of strontium- or cesium-struvite could be observed, reducing bioavailability and thereby constituting the dominant metal and salt resistance strategy in this environment.

4.
Microb Ecol ; 81(1): 169-179, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32617619

RESUMEN

Metagenomic studies revealed the prevalence of Acidobacteria in soils, but the physiological and ecological reasons for their success are not well understood. Many Acidobacteria exhibit carotenoid-related pigments, which may be involved in their tolerance of environmental stress. The aim of this work was to investigate the role of the orange pigments produced by Acidobacteria strain AB23 isolated from a savannah-like soil and to identify putative carotenoid genes in Acidobacteria genomes. Phylogenetic analysis revealed that strain AB23 belongs to the Occallatibacter genus from the class Acidobacteriia (subdivision 1). Strain AB23 produced carotenoids in the presence of light and vitamins; however, the growth rate and biomass decreased when cells were exposed to light. The presence of carotenoids resulted in tolerance to hydrogen peroxide. Comparative genomics revealed that all members of Acidobacteriia with available genomes possess the complete gene cluster for phytoene production. Some Acidobacteriia members have an additional gene cluster that may be involved in the production of colored carotenoids. Both colored and colorless carotenoids are involved in tolerance to oxidative stress. These results show that the presence of carotenoid genes is widespread among Acidobacteriia. Light and atmospheric oxygen stimulate carotenoid synthesis, but there are other natural sources of oxidative stress in soils. Tolerance to environmental oxidative stress provided by carotenoids may offer a competitive advantage for Acidobacteria in soils.


Asunto(s)
Acidobacteria/genética , Acidobacteria/metabolismo , Farmacorresistencia Bacteriana/genética , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/fisiología , Acidobacteria/efectos de los fármacos , Acidobacteria/aislamiento & purificación , Carotenoides/metabolismo , ADN Bacteriano/genética , Genoma Bacteriano/genética , Familia de Multigenes/genética , Suelo/química , Microbiología del Suelo
5.
Braz J Microbiol ; 50(3): 705-713, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31297747

RESUMEN

Serpentine soils present unique characteristics such as a low Ca/Mg ratio, low concentration of nutrients, and a high concentration of heavy metals, especially nickel. Soil bacterial isolates from an ultramafic complex located in the tropical savanna known as the Brazilian Cerrado were studied. Nickel-tolerant bacteria were obtained, and their ability to remove nickel from a culture medium was assessed. Bacterial isolates presented higher tolerance to nickel salts than previously reported for bacteria obtained from serpentine environments in other regions of the world. In addition, the quantification of nickel in cell pellets indicated that at least four isolates may adsorb soluble forms of nickel. It is expected that information gathered in this study will support future efforts to exploit serpentine soil bacteria for biotechnological processes involving nickel decontamination from environmental samples.


Asunto(s)
Bacterias/metabolismo , Níquel/metabolismo , Alcaloides de Triptamina Secologanina/análisis , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Brasil , Filogenia , Alcaloides de Triptamina Secologanina/metabolismo , Suelo/química
6.
Genome Announc ; 4(5)2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27795240

RESUMEN

Bacteria from the Mucilaginibacter genus are still poorly understood, although their importance has been shown by recent reports describing great quantities of biofilms produced in their colonies. We report the draft genome sequence of a novel Mucilaginibacter member, comprising 8 contigs, totaling 5,478,589 bp and 4,876 predicted coding sequences.

7.
J Chem Ecol ; 42(2): 139-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26826104

RESUMEN

The granular glands of anuran skin secrete an array of bioactive molecules that protect a frog against pathogens and predators. The skin also harbors a microbial community. Although there is evidence to suggest that the microbiota complement the innate immune defense systems against pathogen infection, the effect of the frog bioactive molecules on its resident microbiota has not yet been fully investigated. In the present study, the skin microbiota of Phyllomedusa distincta obtained from two different geographical areas was evaluated with molecular and culture-based approaches. The antagonistic effects exhibited by the host's microbiota and by a novel dermaseptin peptide isolated from P. distincta skin were investigated. Four isolated bacterial colonies displayed antimicrobial activity against known frog pathogens. Our results were consistent with the hypothesis that microbiota from P. distincta may interact with pathogenic microorganisms to protect a frog's health. On the other hand, the novel dermaseptin peptide exhibited an antimicrobial effect on pathogens as well as on some of the bacteria obtained from the skin microbiota. The richness of bacteria on P. distincta skin was further investigated by 16S rRNA gene clone libraries, which revealed that the family Enterobacteriaceae was prevalent, but a high variability at the species level was observed among individual frogs. Differences observed on the microbiota of frogs from contrasting habitats indicated an influence of the environment on the structure of the skin microbiota of P. distincta.


Asunto(s)
Antibacterianos/farmacología , Anuros , Microbiota , Piel/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Homología de Secuencia de Aminoácido , Piel/microbiología
8.
Antonie Van Leeuwenhoek ; 107(4): 935-49, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616909

RESUMEN

Ultramafic soils are characterized by high levels of metals, and have been studied because of their geochemistry and its relation to their biological component. This study evaluated soil microbiological functioning (SMF), richness, diversity, and structure of bacterial communities from two ultramafic soils and from a non-ultramafic soil in the Brazilian Cerrado, a tropical savanna. SMF was represented according to simultaneous analysis of microbial biomass C (MBC) and activities of the enzymes ß-glucosidase, acid phosphomonoesterase and arylsulfatase, linked to the C, P and S cycles. Bacterial community diversity and structure were studied by sequencing of 16S rRNA gene clone libraries. MBC and enzyme activities were not affected by high Ni contents. Changes in SMF were more related to the organic matter content of soils (SOM) than to their available Ni. Phylogeny-based methods detected qualitative and quantitative differences in pairwise comparisons of bacterial community structures of the three sites. However, no correlations between community structure differences and SOM or SMF were detected. We believe this work presents benchmark information on SMF, diversity, and structure of bacterial communities for a unique type of environment within the Cerrado biome.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Microbiología del Suelo , Arilsulfatasas/análisis , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biomasa , Brasil , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Pradera , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Clima Tropical , beta-Glucosidasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...