Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423193

RESUMEN

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cerebelo/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37664882

RESUMEN

Increased neurofilament light (NfL; NEFL) protein in biofluids is reflective of neurodegeneration and has gained interest as a biomarker across neurodegenerative diseases. In spinocerebellar ataxia type 3 (SCA3), the most common dominantly inherited ataxia, patients exhibit progressive NfL increases in peripheral blood when becoming symptomatic, and NfL remains stably elevated throughout further disease course. However, progressive NfL changes are not yet validated in relevant preclinical SCA3 animal models, hindering its application as a biomarker during therapeutic development. We used ultra-sensitive single-molecule array (Simoa) to measure blood NfL over disease progression in YACQ84 mice, a model of SCA3, assessing relationships with measures of disease severity including age, CAG repeat size and magnetic resonance spectroscopy. YACQ84 mice exhibited plasma NfL increases that were concomitant with ataxia-related motor deficits as well as increased serum NfL, which correlated with previously established neurometabolite abnormalities, two relevant measures of disease in patients with SCA3. Our findings establish the progression of NfL increases in the preclinical YACQ84 mouse, further supporting the utility of blood NfL as a peripheral neurodegeneration biomarker and informing on coinciding timelines of different measures of SCA3 pathogenesis.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ratones , Filamentos Intermedios , Modelos Animales de Enfermedad , Ataxia , Progresión de la Enfermedad
4.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408238

RESUMEN

Machado-Joseph disease (MJD) is a dominant neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene encoding the ataxin-3 protein. Several cellular processes, including transcription and apoptosis, are disrupted in MJD. To gain further insights into the extent of dysregulation of mitochondrial apoptosis in MJD and to evaluate if expression alterations of specific apoptosis genes/proteins can be used as transcriptional biomarkers of disease, the expression levels of BCL2, BAX and TP53 and the BCL2/BAX ratio (an indicator of susceptibility to apoptosis) were assessed in blood and post-mortem brain samples from MJD subjects and MJD transgenic mice and controls. While patients show reduced levels of blood BCL2 transcripts, this measurement displays low accuracy to discriminate patients from matched controls. However, increased levels of blood BAX transcripts and decreased BCL2/BAX ratio are associated with earlier onset of disease, indicating a possible association with MJD pathogenesis. Post-mortem MJD brains show increased BCL2/BAX transcript ratio in the dentate cerebellar nucleus (DCN) and increased BCL2/BAX insoluble protein ratio in the DCN and pons, suggesting that in these regions, severely affected by degeneration in MJD, cells show signs of apoptosis resistance. Interestingly, a follow-up study of 18 patients further shows that blood BCL2 and TP53 transcript levels increase over time in MJD patients. Furthermore, while the similar levels of blood BCL2, BAX, and TP53 transcripts observed in preclinical subjects and controls is mimicked by pre-symptomatic MJD mice, the expression profile of these genes in patient brains is partially replicated by symptomatic MJD mice. Globally, our findings indicate that there is tissue-specific vulnerability to apoptosis in MJD subjects and that this tissue-dependent behavior is partially replicated in a MJD mouse model.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Estudios de Seguimiento , Enfermedades Neurodegenerativas/complicaciones , Proteína X Asociada a bcl-2/genética , Ratones Transgénicos , Apoptosis
5.
Front Mol Neurosci ; 16: 1154203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122622

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. SCA3 is caused by a CAG repeat expansion in the ATXN3 gene that encodes an expanded tract of polyglutamine in the disease protein ataxin-3 (ATXN3). As a deubiquitinating enzyme, ATXN3 regulates numerous cellular processes including proteasome- and autophagy-mediated protein degradation. In SCA3 disease brain, polyQ-expanded ATXN3 accumulates with other cellular constituents, including ubiquitin (Ub)-modified proteins, in select areas like the cerebellum and the brainstem, but whether pathogenic ATXN3 affects the abundance of ubiquitinated species is unknown. Here, in mouse and cellular models of SCA3, we investigated whether elimination of murine Atxn3 or expression of wild-type or polyQ-expanded human ATXN3 alters soluble levels of overall ubiquitination, as well as K48-linked (K48-Ub) and K63-linked (K63-Ub) chains. Levels of ubiquitination were assessed in the cerebellum and brainstem of 7- and 47-week-old Atxn3 knockout and SCA3 transgenic mice, and also in relevant mouse and human cell lines. In older mice, we observed that wild-type ATXN3 impacts the cerebellar levels of K48-Ub proteins. In contrast, pathogenic ATXN3 leads to decreased brainstem abundance of K48-Ub species in younger mice and changes in both cerebellar and brainstem K63-Ub levels in an age-dependent manner: younger SCA3 mice have higher levels of K63-Ub while older mice have lower levels of K63-Ub compared to controls. Human SCA3 neuronal progenitor cells also show a relative increase in K63-Ub proteins upon autophagy inhibition. We conclude that wild-type and mutant ATXN3 differentially impact K48-Ub- and K63-Ub-modified proteins in the brain in a region- and age-dependent manner.

6.
bioRxiv ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36891289

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machadoâ€"Joseph disease, is the most common dominantly inherited ataxia. SCA3 is caused by a CAG repeat expansion in the ATXN3 gene that encodes an expanded tract of polyglutamine (polyQ) in the disease protein ataxin-3 (ATXN3). As a deubiquitinating enzyme, ATXN3 regulates numerous cellular processes including proteasome- and autophagy-mediated protein degradation. In SCA3 disease brain, polyQ-expanded ATXN3 accumulates with other cellular constituents, including ubiquitin (Ub)-modified proteins, in select areas like the cerebellum and the brainstem, but whether pathogenic ATXN3 affects the abundance of ubiquitinated species is unknown. Here, in mouse and cellular models of SCA3, we investigated whether elimination of murine Atxn3 or expression of wild-type or polyQ-expanded human ATXN3 alters soluble levels of overall ubiquitination, as well as K48-linked (K48-Ub) and K63-linked (K63-Ub) chains. Levels of ubiquitination were assessed in the cerebellum and brainstem of 7- and 47-week-old Atxn3 knockout and SCA3 transgenic mice, and also in relevant mouse and human cell lines. In older mice, we observed that wild-type ATXN3 impacts the cerebellar levels of K48-Ub proteins. In contrast, pathogenic ATXN3 leads to decreased brainstem abundance of K48-Ub species in younger mice and changes in both cerebellar and brainstem K63-Ub levels in an age-dependent manner: younger SCA3 mice have higher levels of K63-Ub while older mice have lower levels of K63-Ub compared to controls. Human SCA3 neuronal progenitor cells also show a relative increase in K63-Ub proteins upon autophagy inhibition. We conclude that wild-type and mutant ATXN3 differentially impact K48-Ub- and K63-Ub-modified proteins in the brain in a region- and age-dependent manner.

7.
Cells ; 11(19)2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36231095

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder showing progressive neuronal loss in several brain areas and a broad spectrum of motor and non-motor symptoms, including ataxia and altered sleep. While sleep disturbances are known to play pathophysiologic roles in other neurodegenerative disorders, their impact on SCA3 is unknown. Using spectrographic measurements, we sought to quantitatively characterize sleep electroencephalography (EEG) in SCA3 transgenic mice with confirmed disease phenotype. We first measured motor phenotypes in 18-31-week-old homozygous SCA3 YACMJD84.2 mice and non-transgenic wild-type littermate mice during lights-on and lights-off periods. We next implanted electrodes to obtain 12-h (zeitgeber time 0-12) EEG recordings for three consecutive days when the mice were 26-36 weeks old. EEG-based spectroscopy showed that compared to wild-type littermates, SCA3 homozygous mice display: (i) increased duration of rapid-eye movement sleep (REM) and fragmentation in all sleep and wake states; (ii) higher beta power oscillations during REM and non-REM (NREM); and (iii) additional spectral power band alterations during REM and wake. Our data show that sleep architecture and EEG spectral power are dysregulated in homozygous SCA3 mice, indicating that common sleep-related etiologic factors may underlie mouse and human SCA3 phenotypes.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Humanos , Enfermedad de Machado-Joseph/genética , Ratones , Ratones Transgénicos , Sueño/fisiología
8.
Neurobiol Dis ; 170: 105774, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605759

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with SCA3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using optical coherence tomography (OCT) and electroretinogram (ERG). In the transgenic mice, we further: a) determined the retinal expression pattern of ATXN3 and the distribution of cones and rods using immunofluorescence (IF); and b) assessed the retinal ultrastructure using transmission electron microscopy (TEM). Some patients with SCA3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and showed further thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with SCA3.


Asunto(s)
Enfermedad de Machado-Joseph , Anciano , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ratones , Ratones Transgénicos , Retina/metabolismo
9.
Nursing (Ed. bras., Impr.) ; 24(273): 5267-5278, fev.2021.
Artículo en Portugués | LILACS, BDENF - Enfermería | ID: biblio-1148503

RESUMEN

Objetivos: Conhecer a satisfação e qualidade do serviço sobre time de acesso vascular e terapia infusional (TAVTI) e identificar a importância do TAVTI para a equipe de saúde. Metodo: Trata-se de uma pesquisa de campo exploratória, descritiva, com abordagem quantitativa e qualitativa. Aplicamos formulários para 149 profissionais. Resultados: Dos participantes, 46,97%(n:70) refere total satisfação frente ao TAVTI; a minoria 0,67%(n:1) demonstra insatisfação total; a maioria considera o serviço muito importante 71,14%(n:106) e excelente atuação para 44,96%(n:67). Apenas 1,34%(2) dos profissionais considerou a qualidade do trabalho regular. Dos participantes, 126 declararam: serviço humanizado; seguro para o paciente; necessita de capacitação e treinamento; material seguro; período integral. Conclusão: A atuação do TAVTI demonstra ser efetiva. Constatou-se a satisfação da equipe de saúde e a importância na pediatria devido à preservação do acesso venoso e o desejo dos profissionais em manter o TAVTI período integral. Frente ao percentual de qualidade considerado, excelente e ótimo.(AU)


Objectives: To know the satisfaction and quality of service on the vascular access and infusional therapy team (TAVTI) and to identify the importance of TAVTI for the health team. Methodo: This is an exploratory, descriptive field research, with a quantitative and qualitative approach. We apply forms to 149 professionals. Results: Of the participants, 46.97% (n: 70) reported total satisfaction with TAVTI; the minority 0.67% (n: 1) shows total dissatisfaction; the majority considered the service very important 71.14% (n: 106) and excellent performance for 44.96% (n: 67). Only 1.34% (2) of the professionals considered the quality of work to be regular. Of the participants, 126 declared: humanized service; safe for the patient; needs qualification and training; safe material; Full time. Conclusion: The performance of TAVTI proves to be effective. The satisfaction of the health team and the importance in pediatrics were found due to the preservation of venous access and the desire of professionals to maintain TAVTI full time. In view of the percentage of quality considered, excellent and great.(AU)


Objetivos: Conocer la satisfacción y calidad del servicio del equipo de acceso vascular y terapia infusional (TAVTI) e identificar la importancia de TAVTI para el equipo de salud. Metodo: Se trata de una investigación de campo exploratoria, descriptiva, con enfoque cuantitativo y cualitativo. Aplicamos formularios a 149 profesionales. Resultados: De los participantes, el 46,97% (n: 70) reportaron satisfacción total con TAVTI; la minoría 0,67% (n: 1) muestra total insatisfacción; la mayoría consideró el servicio muy importante 71,14% (n: 106) y excelente desempeño para el 44,96% (n: 67). Solo el 1,34% (2) de los profesionales consideró regular la calidad del trabajo. De los participantes, 126 declararon: servicio humanizado; seguro para el paciente; necesita cualificación y formación; material seguro; período integral. Conclusión: La actuación de TAVTI demuestra ser eficaz. La satisfacción del equipo de salud y la importancia en pediatría se encontraron debido a la preservación del acceso venoso y el deseo de los profesionales de mantener TAVTI a tiempo completo. En vista del porcentaje de calidad considerado, excelente y óptimo.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Grupo de Atención al Paciente , Enfermería Pediátrica/métodos , Calidad de la Atención de Salud , Infusiones Intravenosas/métodos , Dispositivos de Acceso Vascular , Satisfacción en el Trabajo , Satisfacción del Paciente , Necesidades y Demandas de Servicios de Salud
10.
Cell Rep ; 33(6): 108360, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176149

RESUMEN

Expansion of a CAG repeat in ATXN3 causes the dominant polyglutamine disease spinocerebellar ataxia type 3 (SCA3), yet the physiological role of ATXN3 remains unclear. Here, we focus on unveiling the function of Ataxin-3 (ATXN3) in the retina, a neurological organ amenable to morphological and physiological studies. Depletion of Atxn3 in zebrafish and mice causes morphological and functional retinal alterations and, more precisely, photoreceptor cilium and outer segment elongation, cone opsin mislocalization, and cone hyperexcitation. ATXN3 localizes at the basal body and axoneme of the cilium, supporting its role in regulating ciliary length. Abrogation of Atxn3 expression causes decreased levels of the regulatory protein KEAP1 in the retina and delayed phagosome maturation in the retinal pigment epithelium. We propose that ATXN3 regulates two relevant biological processes in the retina, namely, ciliogenesis and phagocytosis, by modulating microtubule polymerization and microtubule-dependent retrograde transport, thus positing ATXN3 as a causative or modifier gene in retinal/macular dystrophies.


Asunto(s)
Ataxina-3/metabolismo , Cilios/metabolismo , Retina/metabolismo , Animales , Cilios/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Fagocitosis/fisiología , Transfección , Pez Cebra
11.
Mov Disord ; 35(10): 1774-1786, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32621646

RESUMEN

BACKGROUND: No treatment exists for the most common dominantly inherited ataxia Machado-Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models. OBJECTIVE: We sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology. METHODS: Cerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene. RESULTS: Both Q84/Q84 and Q135 mice displayed lower N-acetylaspartate than wild-type littermates, indicating neuroaxonal loss/dysfunction, and lower myo-inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N-acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long-term sustained RNA interference (RNAi)-mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella. CONCLUSIONS: N-acetylaspartate, myo-inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Machado-Joseph/genética , Espectroscopía de Resonancia Magnética , Ratones
12.
Curr Opin Neurol ; 33(4): 519-526, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32657894

RESUMEN

PURPOSE OF REVIEW: Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominantly inherited, neurodegenerative disease caused by expansion of a CAG repeat in the coding region of the ATXN3 gene. No disease-modifying treatment is yet available for MJD/SCA3. This review discusses recently developed therapeutic strategies that hold promise as future effective treatments for this incurable disease. RECENT FINDINGS: As a result of the exploration of multiple therapeutic approaches over the last decade, the MJD/SCA3 field is finally starting to see options for disease-modifying treatments for this disease come into view on the horizon. Recently developed strategies include DNA-targeted and RNA-targeted therapies, and approaches targeting protein quality control pathways and cellular homeostasis. SUMMARY: While still in preclinical testing stages, antisense oligonucleotides, short hairpin RNAs and citalopram all show promise to reaching testing in clinical trials for MJD/SCA3. Two pharmacological approaches in early stages of development, the slipped-CAG DNA binding compound naphthyridine-azaquinolone and autophagosome-tethering compounds, also show potential therapeutic capacity for MJD/SCA3. Overall, a handful of therapeutic options are currently showing potential as future successful treatments for fatal MJD/SCA3.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Naftiridinas/uso terapéutico , Quinolonas/uso terapéutico , Humanos , Enfermedad de Machado-Joseph/genética
13.
Neurobiol Dis ; 137: 104697, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31783119

RESUMEN

Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disorder caused by a CAG repeat expansion encoding an abnormally long polyglutamine (polyQ) tract in the disease protein, ataxin-3 (ATXN3). No preventive treatment is yet available for SCA3. Because SCA3 is likely caused by a toxic gain of ATXN3 function, a rational therapeutic strategy is to reduce mutant ATXN3 levels by targeting pathways that control its production or stability. Here, we sought to identify genes that modulate ATXN3 levels as potential therapeutic targets in this fatal disorder. We screened a collection of siRNAs targeting 2742 druggable human genes using a cell-based assay based on luminescence readout of polyQ-expanded ATXN3. From 317 candidate genes identified in the primary screen, 100 genes were selected for validation. Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of physiological ATXN3 abundance in SCA3 neuronal progenitor cells. Among the 15 genes shown to modulate ATXN3 in mammalian cells, orthologs of CHD4, FBXL3, HR and MC3R regulate mutant ATXN3-mediated toxicity in fly eyes. Further mechanistic studies of one of these genes, FBXL3, encoding a F-box protein that is a component of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex, showed that it reduces levels of normal and pathogenic ATXN3 in SCA3 neuronal progenitor cells, primarily via a SCF complex-dependent manner. Bioinformatic analysis of the 15 genes revealed a potential molecular network with connections to tumor necrosis factor-α/nuclear factor-kappa B (TNF/NF-kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Overall, we identified 15 druggable genes with diverse functions to be suppressors or enhancers of pathogenic ATXN3 abundance. Among identified pathways highlighted by this screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological levels of ATXN3 protein.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/genética , Neuronas/metabolismo , Proteínas Represoras/genética , Humanos , Enfermedad de Machado-Joseph/patología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética
14.
J Mol Neurosci ; 69(3): 450-455, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31286408

RESUMEN

Alongside with the emergent clinical trials for Machado-Joseph disease/Spinocerebellar ataxia type 3 (MJD/SCA3) comes the need to identify molecular biomarkers of disease that can be tracked throughout the trial. MJD is an autosomal dominant neurodegenerative disorder caused by expansion of a CAG repeat in the coding region of the ATXN3 gene. Previous findings indicate the potential of transcriptional alterations in blood of MJD patients as biomarkers of disease. Accurate quantification of gene expression levels by quantitative real-time PCR (qPCR) depends on data normalization, usually performed using reference genes. Because the expression level of routinely used housekeeping genes may vary in multiple biological and experimental conditions, reference gene controls should be validated in each specific experimental design. Here, we aimed to evaluate the expression behavior of five housekeeping genes previously reported as stably expressed in peripheral blood of patients from several disorders-peptidylprolyl isomerase B (PPIB), TNF receptor associated protein 1 (TRAP1), beta-2-microglobulin (B2M), 2,4-dienoyl-CoA reductase 1 (DECR1), and folylpolyglutamate synthase (FPGS). Expression levels of these five genes were assessed by qPCR in blood from MJD subjects (preataxic and patients) and matched controls. While all housekeeping genes, here studied, were stably expressed in our sets of samples, TRAP1 showed to be the most stable gene by NormFinder and BestKeeper. We, therefore, conclude that any of these genes could be used as reference gene in future qPCR studies using blood samples from MJD subjects.


Asunto(s)
Expresión Génica , Enfermedad de Machado-Joseph/genética , Adulto , Estudios de Casos y Controles , Ciclofilinas/sangre , Ciclofilinas/genética , Femenino , Proteínas HSP90 de Choque Térmico/sangre , Proteínas HSP90 de Choque Térmico/genética , Humanos , Enfermedad de Machado-Joseph/sangre , Masculino , Persona de Mediana Edad , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/sangre , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Péptido Sintasas/sangre , Péptido Sintasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Adulto Joven , Microglobulina beta-2/sangre , Microglobulina beta-2/genética
15.
Mol Neurobiol ; 56(5): 3690-3701, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30187384

RESUMEN

Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is a fatal polyglutamine disease with no disease-modifying treatment. The selective serotonin reuptake inhibitor citalopram was shown in nematode and mouse models to be a compelling repurposing candidate for Machado-Joseph disease therapeutics. We sought to confirm the efficacy of citalopram to decrease ATXN3 aggregation in an unrelated mouse model of Machado-Joseph disease. Four-week-old YACMJD84.2 mice and non-transgenic littermates were given citalopram 8 mg/kg in drinking water or water for 10 weeks. At the end of treatment, brains were collected for biochemical and pathological analyses. Brains of citalopram-treated YACMJD84.2 mice showed an approximate 50% decrease in the percentage of cells containing ATXN3-positive inclusions in the substantia nigra and three examined brainstem nuclei compared to controls. No differences in ATXN3 inclusion load were observed in deep cerebellar nuclei of mice. Citalopram effect on ATXN3 aggregate burden was corroborated by immunoblotting analysis. While lysates from the brainstem and cervical spinal cord of citalopram-treated mice showed a decrease in all soluble forms of ATXN3 and a trend toward reduction of insoluble ATXN3, no differences in ATXN3 levels were found between cerebella of citalopram-treated and vehicle-treated mice. Citalopram treatment altered levels of select components of the cellular protein homeostatic machinery that may be expected to enhance the capacity to refold and/or degrade mutant ATXN3. The results here obtained in a second independent mouse model of Machado-Joseph disease further support citalopram as a potential drug to be repurposed for this fatal disorder.


Asunto(s)
Ataxina-3/metabolismo , Citalopram/uso terapéutico , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Agregado de Proteínas , Animales , Autofagia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Citalopram/farmacología , Modelos Animales de Enfermedad , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Especificidad de Órganos
16.
Hum Mol Genet ; 26(8): 1419-1431, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158474

RESUMEN

Polyglutamine (polyQ) repeat expansion in the deubiquitinase ataxin-3 causes neurodegeneration in Spinocerebellar Ataxia Type 3 (SCA3), one of nine inherited, incurable diseases caused by similar mutations. Ataxin-3's degradation is inhibited by its binding to the proteasome shuttle Rad23 through ubiquitin-binding site 2 (UbS2). Disrupting this interaction decreases levels of ataxin-3. Since reducing levels of polyQ proteins can decrease their toxicity, we tested whether genetically modulating the ataxin-3-Rad23 interaction regulates its toxicity in Drosophila. We found that exogenous Rad23 increases the toxicity of pathogenic ataxin-3, coincident with increased levels of the disease protein. Conversely, reducing Rad23 levels alleviates toxicity in this SCA3 model. Unexpectedly, pathogenic ataxin-3 with a mutated Rad23-binding site at UbS2, despite being present at markedly lower levels, proved to be more pathogenic than a disease-causing counterpart with intact UbS2. Additional studies established that the increased toxicity upon mutating UbS2 stems from disrupting the autoprotective role that pathogenic ataxin-3 has against itself, which depends on the co-chaperone, DnaJ-1. Our data reveal a previously unrecognized balance between pathogenic and potentially therapeutic properties of the ataxin-3-Rad23 interaction; they highlight this interaction as critical for the toxicity of the SCA3 protein, and emphasize the importance of considering protein context when pursuing suppressive avenues.


Asunto(s)
Ataxina-3/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Enfermedad de Machado-Joseph/genética , Degeneración Nerviosa/genética , Proteínas Represoras/genética , Animales , Ataxina-3/metabolismo , Sitios de Unión , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Humanos , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Chaperonas Moleculares/genética , Degeneración Nerviosa/patología , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo , Ubiquitina/genética
17.
Brain ; 139(11): 2891-2908, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27645800

RESUMEN

No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies.


Asunto(s)
Antipsicóticos/uso terapéutico , Aripiprazol/uso terapéutico , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Proteínas Mutantes/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Ataxina-3/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Drosophila , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Células HEK293/ultraestructura , Humanos , Enfermedad de Machado-Joseph/genética , Ratones , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , Péptidos/genética , Piperidinas/farmacología , Piranos/farmacología , Pirazoles/farmacología
18.
Neurobiol Dis ; 82: 281-288, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26141599

RESUMEN

Accumulation of mutant polyglutamine proteins in intraneuronal inclusions is a hallmark of polyglutamine diseases. Impairment of protein clearance systems and sequestration of clearance-related proteins into inclusions occur in many protein folding diseases, including polyglutamine diseases. The ubiquitin-binding and proteasome adaptor protein UBQLN2 participates in protein homeostasis and localizes to inclusions in various neurodegenerative diseases. Employing mouse models and human brain tissue of Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3), we show that UBQLN2 is selectively recruited to inclusions in HD but not SCA3. Consistent with this result, in a cell-based system mutant HTT interacts with UBQLN2 through the UBA domain while the SCA3 disease protein ATXN3, a deubiquitinating enzyme, does not interact with UBQLN2. Differential recruitment of UBQLN2 to aggregates in HD and SCA3 underscores the heterogeneity of inclusions in polyglutamine diseases and suggests that components of neuronal protein quality control may be differentially perturbed in distinct polyQ diseases.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enfermedad de Huntington/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas Relacionadas con la Autofagia , Encéfalo/patología , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Cuerpos de Inclusión Intranucleares/patología , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ubiquitinas/genética
19.
Hum Mol Genet ; 24(1): 100-17, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25143392

RESUMEN

The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell morphology, cytoskeletal organization, proliferation and survival of SH-SY5Y and PC12 cells. This cellular phenotype is associated with increased proteasomal degradation of α5 integrin subunit (ITGA5) and reduced activation of integrin signalling and is rescued by ITGA5 overexpression. Interestingly, silencing of ATXN3, overexpression of mutant versions of ATXN3 lacking catalytic activity or bearing an expanded polyglutamine (polyQ) tract led to partially overlapping phenotypes. In vivo analysis showed that both Atxn3 knockout and MJD transgenic mice had decreased levels of ITGA5 in the brain. Furthermore, abnormal morphology and reduced branching were observed both in cultured neurons expressing shRNA for ATXN3 and in those obtained from MJD mice. Our results show that ATXN3 rescues ITGA5 from proteasomal degradation in neurons and that polyQ expansion causes a partial loss of this cellular function, resulting in reduced integrin signalling and neuronal cytoskeleton modifications, which may be contributing to neurodegeneration.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Ataxina-3 , Diferenciación Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Integrina alfa5/metabolismo , Ratones , Células PC12 , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Wistar
20.
Hum Mol Genet ; 24(5): 1211-24, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25320121

RESUMEN

Polyglutamine diseases, including spinocerebellar ataxia type 3 (SCA3), are caused by CAG repeat expansions that encode abnormally long glutamine repeats in the respective disease proteins. While the mechanisms underlying neurodegeneration remain uncertain, evidence supports a proteotoxic role for the mutant protein dictated in part by the specific genetic and protein context. To further define pathogenic mechanisms in SCA3, we generated a mouse model in which a CAG expansion of 82 repeats was inserted into the murine locus by homologous recombination. SCA3 knockin mice exhibit region-specific aggregate pathology marked by intranuclear accumulation of the mutant Atxn3 protein, abundant nuclear inclusions and, in select brain regions, extranuclear aggregates localized to neuritic processes. Knockin mice also display altered splicing of the disease gene, promoting expression of an alternative isoform in which the intron immediately downstream of the CAG repeat is retained. In an independent mouse model expressing the full human ATXN3 disease gene, expression of this alternatively spliced transcript is also enhanced. These results, together with recent findings in other polyglutamine diseases, suggest that CAG repeat expansions can promote aberrant splicing to produce potentially more aggregate-prone isoforms of the disease proteins. This report of a SCA3 knockin mouse expands the repertoire of existing models of SCA3, and underscores the potential contribution of alternative splicing to disease pathogenesis in SCA3 and other polyglutamine disorders.


Asunto(s)
Empalme Alternativo , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Ataxina-3 , Secuencia de Bases , Línea Celular , Exones , Femenino , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Sitios Genéticos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...