Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(6): 3569-3584, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32061003

RESUMEN

The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long-running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought-stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought-induced mortality following long-term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought-induced mortality.


Asunto(s)
Sequías , Árboles , Brasil , Hojas de la Planta , Bosque Lluvioso , Agua
2.
New Phytol ; 218(4): 1393-1405, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29397028

RESUMEN

CO2 efflux from stems (CO2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand-scale future estimates of changes in stem CO2 emissions remain highly uncertain.


Asunto(s)
Dióxido de Carbono/metabolismo , Sequías , Bosques , Tallos de la Planta/metabolismo , Estrés Fisiológico , Árboles/anatomía & histología , Clima Tropical , Respiración de la Célula , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...