Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mar Environ Res ; 194: 106321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159409

RESUMEN

The dinoflagellates Protoceratium reticulatum and Lingulodinium polyedra are potential yessotoxin (YTX) producers, which have been associated with blooms responsible for economic, social, and ecological impacts around the world. They occur in Iberian waters, but in this region, little is known of their ecophysiology and toxin profiles. This study investigated the growth and toxin production of two strains of each species, from the Portuguese coast, at 15 °C, 19 °C, and 23 °C. Growth curves showed higher growth rates at 19 °C, for both species. YTX and three analogs (homo YTX; 45-OH YTX; 45-OH homo YTX) were investigated by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), and the presence of other analogs was investigated by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). No evidence of toxin production was found in L. polyedra. By contrast, YTX and 45,55-diOH-YTX were detected in both strains of P. reticulatum. These results confirm P. reticulatum as a source of yessotoxins along the Portuguese coast and add to the observed high intraspecific variability on YTX production of both species, at a global scale.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Venenos de Moluscos , Oxocinas , Cromatografía Liquida , Toxinas Marinas/análisis , Temperatura , Portugal , Espectrometría de Masas en Tándem
2.
Toxins (Basel) ; 15(11)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999493

RESUMEN

The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Humanos , Intoxicación por Ciguatera/epidemiología , Portugal/epidemiología , Ecosistema , Estudios Retrospectivos , Ciguatoxinas/toxicidad , Ciguatoxinas/análisis , Peces
3.
Toxins (Basel) ; 15(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36828406

RESUMEN

Bivalves are a high-value product whose production has markedly increased, reaching 9863 tonnes in Portugal in 2021. Bivalves' habitats-lagoons, estuaries and coastal waters-are exposed to biological and anthropogenic contaminants, which can bioaccumulate in these organisms and pose a significant public health risk. The need to obtain a safe product for human consumption led to the implementation of standardised hygiene regulations for harvesting and marketing bivalve molluscs, resulting in routine monitoring of bivalve production areas for microbial quality, metal contaminants, and marine biotoxins. While excessive levels of biotoxins and metal contamination lead to temporary harvesting bans, high faecal contamination leads to area reclassification and impose post-harvest treatments. In this study, the seasonal and temporal variability of these parameters were analysed using historical data generated by the monitoring programme during the last decade. Moreover, the impact of the monitoring program on bivalve harvesting from 2011 to 2020 was assessed. This program presented a considerable improvement over time, with an increase in the sampling effort and the overall program representativeness. Finally, contamination risk, revising control measures, and defining recommendations for risk mitigation measures are given in the light of ten years' monitoring.


Asunto(s)
Bivalvos , Toxinas Marinas , Animales , Humanos , Toxinas Marinas/análisis , Portugal , Monitoreo del Ambiente/métodos , Mariscos/análisis
4.
Toxins (Basel) ; 15(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36828471

RESUMEN

Marine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer Gymnodinium catenatum, a dinoflagellate inhabiting temperate and tropical coastal waters. Two MHW were simulated-category I (i.e., peak: 19.9 °C) and category IV (i.e., peak: 24.1 °C)-relative to the estimated baseline in the western coast of Portugal (18.5 °C). No significant changes in abundance, size, and photosynthetic efficiency were observed among treatments. On the other hand, chain-formation was significantly reduced under category IV MHW, as was PSP toxicity and production of some PST compounds. Overall, this suggests that G. catenatum may have a high tolerance to MHWs. Nevertheless, some sublethal effects may have occurred since chain-formation was affected, suggesting that these growth conditions may be sub-optimal for this population. Our study suggests that the increase in frequency, intensity, and duration of MHWs may lead to reduced severity of G. catenatum blooms.


Asunto(s)
Dinoflagelados , Calor , Humanos , Saxitoxina/toxicidad , Toxinas Marinas , Mariscos
5.
Mar Drugs ; 20(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355003

RESUMEN

Saxitoxin and its more than 50 analogues are a group of naturally occurring neurotoxins collectively designated as paralytic shellfish toxins (PSTs). PSTs are toxic to humans and maximum legal limits in seafood have been implemented by regulatory authorities worldwide. In the European Union, monitoring of PSTs is performed using the AOAC Official Method 2005.06, based on liquid chromatography coupled with fluorescence detection (LC- FLD). However, this method has been suggested to not effectively detect the emerging C-11 hydroxyl (M-toxins) and benzoate (GC-toxins) analogues, with these analogues currently not being surveyed in monitoring programs. In this study, a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was used to search for these emerging PSTs in mussels, Mytilus galloprovincialis, contaminated following an intense Gymnodinium catenatum bloom in the Tagus estuary (Lisbon, Portugal). Five M-toxins (M1, M2, M6, dcM6, and dcM10), but no GC-toxins, were detected in the mussels' whole-soft body tissue. Moreover, the classical PSTs (C1 to C4, GTX 4 to GTX6, dcGTX1 to dcGTX4, dcSTX, dcNEO, and STX) were also found and comprised the largest fraction of the PSTs' profile. The presence of unregulated PSTs in edible mussel samples suggests potential seafood safety risks and urges further research to determine the frequency of these analogues in seafood and their contribution to toxicity.


Asunto(s)
Dinoflagelados , Mytilus , Intoxicación por Mariscos , Humanos , Animales , Intoxicación por Mariscos/etiología , Toxinas Marinas/química , Dinoflagelados/química , Cromatografía Liquida , Saxitoxina , Espectrometría de Masas en Tándem , Mariscos/análisis
6.
Biology (Basel) ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290328

RESUMEN

Toxin-producing microalgae present a significant environmental risk for ecosystems and human societies when they reach concentrations that affect other aquatic organisms or human health. Harmful algal blooms (HAB) have been linked to mass wildlife die-offs and human food poisoning episodes, and climate change has the potential to alter the frequency, magnitude, and geographical extent of such events. Thus, a framework of species distribution models (SDMs), employing MaxEnt modeling, was used to project changes in habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.e., Alexandrium catenella, A. minutum, and Gymnodinium catenatum), up to 2050 and 2100, across four representative concentration pathway scenarios (RCP-2.6, 4.5, 6.0, and 8.5; CMIP5). Despite slightly different responses at the regional level, the global habitat suitability has decreased for all the species, leading to an overall contraction in their tropical and sub-tropical ranges, while considerable expansions are projected in higher latitudes, particularly in the Northern Hemisphere, suggesting poleward distributional shifts. Such trends were exacerbated with increasing RCP severity. Yet, further research is required, with a greater assemblage of environmental predictors and improved occurrence datasets, to gain a more holistic understanding of the potential impacts of climate change on PST-producing species.

7.
Mar Drugs ; 20(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36286418

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin naturally occurring in terrestrial and marine organisms such as pufferfish. Due to the risk of TTX poisoning, fish of Tetraodontidae family and other puffer-related species must not be placed in the EU markets. This restriction applies to fish of the family Molidae even though no data on toxins' occurrence is available. In this study, the presence of TTX and its analogues was investigated in the main edible tissue (the white muscle) and the main xenobiotics storage organ (the liver) of ocean sunfish Mola spp. (n = 13) from the South Portuguese coast. HILIC-MS/MS analyses did not reveal TTX in the analyzed samples, suggesting an inexistent or very limited risk of TTX poisoning.


Asunto(s)
Tetraodontiformes , Animales , Tetrodotoxina/toxicidad , Tetrodotoxina/análisis , Espectrometría de Masas en Tándem , Neurotoxinas/análisis , Portugal/epidemiología , Océanos y Mares
8.
Toxins (Basel) ; 14(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36287948

RESUMEN

Diarrhetic Shellfish Poisoning (DSP) is an acute intoxication caused by the consumption of contaminated shellfish, which is common in many regions of the world. To safeguard human health, most countries implement programs focused on the surveillance of toxic phytoplankton abundance and shellfish toxicity levels, an effort that can be complemented by a deeper understanding of the underlying phenomena. In this work, we identify patterns of seasonality in shellfish toxicity across the Portuguese coast and analyse time-lagged correlations between this toxicity and various potential risk factors. We extend the understanding of these relations through the introduction of temporal lags, allowing the analysis of time series at different points in time and the study of the predictive power of the tested variables. This study confirms previous findings about toxicity seasonality patterns on the Portuguese coast and provides further quantitative data about the relations between shellfish toxicity and geographical location, shellfish species, toxic phytoplankton abundances, and environmental conditions. Furthermore, multiple pairs of areas and shellfish species are identified as having correlations high enough to allow for a predictive analysis. These results represent the first step towards understanding the dynamics of DSP toxicity in Portuguese shellfish producing areas, such as temporal and spatial variability, and towards the development of a shellfish safety forecasting system.


Asunto(s)
Intoxicación por Mariscos , Humanos , Toxinas Marinas/toxicidad , Toxinas Marinas/análisis , Mariscos/análisis , Fitoplancton
9.
Toxicon ; 216: 88-91, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35817092

RESUMEN

Tetrodotoxins (TTXs) were investigated in two local pufferfish species, Diodon hystrix and Arothron hispidus, from Mozambican coast. TTX and analogues 4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, and 11-norTTX-6-(R/S)-ol were found in both species and high level of TTX was found in A. hispidus (9522.0 µg TTX kg-1) than in D. hystrix (350.9 µg TTX kg-1). The distribution of TTX and their analogues in A. hispidus was intestine > liver > skin â‰« muscle > gonads. This is the first report of TTXs in Mozambican coast.


Asunto(s)
Tetraodontiformes , Animales , Hígado , Mozambique , Tetrodotoxina
10.
Toxins (Basel) ; 14(7)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878205

RESUMEN

The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores' and trophonts' feeding process.


Asunto(s)
Dinoflagelados , Enfermedades de los Peces , Parásitos , Dorada , Animales , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Filogenia , Dorada/parasitología
11.
Mar Drugs ; 20(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35200672

RESUMEN

The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. By combining unambiguous identification with the high selectivity of tandem MS, it provides the required high sensitivity and specificity. However, LC-MS is prone to matrix effects (ME) that need to be evaluated during the development and validation of methods. Furthermore, the large sample-to-sample variability, even between samples of the same species and geographic origin, needs a procedure to evaluate and control ME continuously. Here, we analyzed the toxins okadaic acid (OA), dinophysistoxins (DTX-1 and DTX-2), pectenotoxin (PTX-2), yessotoxin (YTX) and azaspiracid-1 (AZA-1). Samples were mussels (Mytilus galloprovincialis), both fresh and processed, and a toxin-free mussel reference material. We developed an accurate mass-extracted ion chromatogram (AM-XIC) based quantitation method using an Orbitrap instrument, evaluated the ME for different types and extracts of mussel samples, characterized the main compounds co-eluting with the targeted molecules and quantified toxins in samples by following a standard addition method (SAM). An AM-XIC based quantitation of lipophilic toxins in mussel samples using high resolution and accuracy full scan profiles (LC-HR-MS) is a good alternative to multi reaction monitoring (MRM) for instruments with HR capabilities. ME depend on the starting sample matrix and the sample preparation. ME are particularly strong for OA and related toxins, showing values below 50% for fresh mussel samples. Results for other toxins (AZA-1, YTX and PTX-2) are between 75% and 110%. ME in unknown matrices can be evaluated by comparing their full scan LC-HR-MS profiles with those of known samples with known ME. ME can be corrected by following SAM with AM-XIC quantitation if necessary.


Asunto(s)
Cromatografía Liquida/métodos , Toxinas Marinas/aislamiento & purificación , Espectrometría de Masas/métodos , Mytilus/metabolismo , Animales , Toxinas Marinas/análisis , Toxinas Marinas/química
12.
Toxins (Basel) ; 15(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36668829

RESUMEN

Harmful algal blooms (HABs) are considered one of the main risks for marine ecosystems and human health worldwide. Climate change is projected to induce significant changes in species geographic distribution, and, in this sense, it is paramount to accurately predict how it will affect toxin-producing microalgae. In this context, the present study was intended to project the potential biogeographical changes in habitat suitability and occurrence distribution of three key amnesic shellfish toxin (AST)-producing diatom species (i.e., Pseudo-nitzschia australis, P. seriata, and P. fraudulenta) under four different climate change scenarios (i.e., RCP-2.6, 4.5, 6.0, and 8.5) up to 2050 and 2100. For this purpose, we applied species distribution models (SDMs) using four abiotic predictors (i.e., sea surface temperature, salinity, current velocity, and bathymetry) in a MaxEnt framework. Overall, considerable contraction and potential extirpation were projected for all species at lower latitudes together with projected poleward expansions into higher latitudes, mainly in the northern hemisphere. The present study aims to contribute to the knowledge on the impacts of climate change on the biogeography of toxin-producing microalgae species while at the same time advising the correct environmental management of coastal habitats and ecosystems.


Asunto(s)
Diatomeas , Microalgas , Humanos , Cambio Climático , Ecosistema , Toxinas Marinas , Floraciones de Algas Nocivas , Mariscos/análisis
13.
Toxins (Basel) ; 13(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34822568

RESUMEN

Bivalves constitute an important source of proteins for human consumption, but some accumulate biotoxins such as diarrhetic shellfish toxins (DSTs), constituting a risk to human health. The cockle Cerastoderma edule is one of the most important species harvested in the Portuguese coast but also one of the most affected species due to recurrent DSTs exposure. However, little is known regarding the effects of the toxins produced by blooming dinoflagellates on C. edule. Herein, we explore the Differentially Expressed Genes (DEGs) of two tissues (gills and digestive gland) from wild cockles sampled in Portugal, through their whole transcriptomic response in two different seasons (exposed and not exposed to DSTs). The de novo transcriptome assembly returned 684,723 contigs, N50 of 1049, and 98.53% completeness. Altogether, 1098 DEGs were identified, of which 353 DEGs were exclusive for the digestive gland, 536 unique for the gills and 209 DEGs were common. Among DEGs were identified known DSTs-biomarkers including glutathione peroxidase, glutathione S-transferase, superoxide dismutase, cytochrome P450, ABC transporters, actin and tubulin-related proteins, Heat shock proteins and complement C1Q-like proteins. This study provides the first transcriptomic profile of C. edule, giving new insights about its molecular responses under different environmental conditions of DSTs exposure.


Asunto(s)
Cardiidae/metabolismo , Expresión Génica , Toxinas Marinas/análisis , Transcriptoma , Animales , Cardiidae/química , Perfilación de la Expresión Génica , Portugal , Estaciones del Año
14.
Toxins (Basel) ; 13(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34437451

RESUMEN

The Selvagens Islands, which are a marine protected area located at the southernmost point of the Portuguese maritime zone, have been associated with fish harboring ciguatoxins (CTX) and linked to ciguatera fish poisonings. This study reports the results of a field sampling campaign carried out in September 2018 in these remote and rarely surveyed islands. Fifty-six fish specimens from different trophic levels were caught for CTX-like toxicity determination by cell-based assay (CBA) and toxin content analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, high toxicity levels were found in fish with an intermediate position in the food web, such as zebra seabream (Diplodus cervinus) and barred hogfish (Bodianus scrofa), reaching levels up to 0.75 µg CTX1B equivalent kg-1. The LC-MS/MS analysis confirmed that C-CTX1 was the main toxin, but discrepancies between CBA and LC-MS/MS in D. cervinus and top predator species, such as the yellowmouth barracuda (Sphyraena viridis) and amberjacks (Seriola spp.), suggest the presence of fish metabolic products, which need to be further elucidated. This study confirms that fish from coastal food webs of the Selvagens Islands represent a high risk of ciguatera, raising important issues for fisheries and environmental management of the Selvagens Islands.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas/análisis , Ciguatoxinas/química , Ciguatoxinas/toxicidad , Peces , Animales , Océano Atlántico , Islas , Portugal , Especificidad de la Especie
15.
Toxins (Basel) ; 13(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807311

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin, considered an emerging toxin in Europe where recently a safety limit of 44 µg TTX kg-1 was recommended by authorities. In this study, three specimens of the large gastropod trumpet shell Charonia lampas bought in a market in south Portugal were analyzed using a neuroblastoma cell (N2a) based assay and by LC-MS/MS. N2a toxicity was observed in the viscera of two individuals analyzed and LC-MS/MS showed very high concentrations of TTX (42.1 mg kg-1) and 4,9-anhydroTTX (56.3 mg kg-1). A third compound with m/z 318 and structurally related with TTX was observed. In the edible portion, i.e., the muscle, toxin levels were below the EFSA recommended limit. This study shows that trumpet shell marine snails are seafood species that may reach the markets containing low TTX levels in the edible portion but containing very high levels of TTX in non-edible portion raising concerns regarding food safety if a proper evisceration is not carried out by consumers. These results highlight the need for better understanding TTX variability in this gastropod species, which is critical to developing a proper legal framework for resources management ensuring seafood safety, and the introduction of these gastropods in the markets.


Asunto(s)
Contaminación de Alimentos , Gastrópodos/química , Alimentos Marinos/análisis , Tetrodotoxina/análisis , Animales , Monitoreo Biológico , Línea Celular Tumoral , Cromatografía Liquida , Humanos , Océanos y Mares , Medición de Riesgo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
16.
Toxicon ; 181: 91-101, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32371068

RESUMEN

The toxigenic dinoflagellate Ostreopsis cf. ovata is known to produce a range of palytoxin (PLTX) - related compounds named ovatoxins (OVTX). O. cf. ovata presents a wide variability in toxin production and its toxic profile is strain-specific. Several OVTXs, denominated from -a to -h and -l have been reported from different strains of this benthic microalgae up to now, mainly in Mediterranean isolates. However, less is known about the toxin profile of the strains present in the Atlantic coasts of Europe. In this work, strains of O. cf. ovata isolated from the South coast of Portugal mainland (Algarve) and Selvagens Island (Madeira, Portugal) were cultured and tested for toxicity by hemolytic assay. Toxin profiles were qualitatively elucidated by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). The strain from Algarve presented lower toxic potency than the strain from Selvagens island (12.3 against 54.8 pg of PLTX equivalents per cell) showing in both cases the characteristic toxin profile of Mediterranean strains. The major component, OVTX-a, was concomitant with OVTX from -b to -g and isobaric PLTX. Regarding the morphological characteristics of these strains, as well as their toxin fingerprint, it is likely they are closely related to strains from Mediterranean coasts. The present study reports for the first time the occurrence of several OVTX congeners and iso-PLTX in O. cf. ovata from Portuguese waters. This study provides valuable information to characterize the risk of OVTXs-related outbreaks in Portugal.


Asunto(s)
Dinoflagelados , Toxinas Marinas/toxicidad , Cromatografía Liquida , Portugal
17.
Toxicon ; 179: 53-59, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32147514

RESUMEN

Fish are frequently exposed to harmful algal blooms (HAB) and to related toxins. However, the biological effects of okadaic acid (OA), the most abundant and frequent HAB-toxin in Europe, South America and Asia, have been poorly investigated. In this study, fish swimming performance and metabolic rates were investigated in juveniles of Zebra seabream (Diplodus cervinus) exposed to OA-group toxins via dietary route, during three days. Fish fed on contaminated food accumulated up to 455.5 µg OA equiv. Kg-1. Significant lower mean critical swimming speed (Ucrit) were observed in fish orally exposed to OA (and its related isomer dinophysistoxin-1, DTX-1) than fish feeding on non-toxic diet. A tendency to higher demands of oxygen consumption was also recorded in OA-exposed fish at higher current velocities. This study indicates that fish may not be affected by OA-group toxins under basal conditions, but suggests a decrease in fitness linked to a reduction in swimming performance of fish exposed to OA under increased stimulus. OA and related toxins are suggested to have a cryptic effect on swimming performance that may be enhanced when fish deals with multiple stressors. Considering that a reduction in swimming performance may have impact on critical activities, such as foraging and escaping from predators, this study highlights the ecological risk associated with dinoflagellate toxic blooms, biotoxins food web transfer and fish contamination.


Asunto(s)
Peces/fisiología , Ácido Ocadaico/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Exposición Dietética , Dinoflagelados , Cadena Alimentaria , Floraciones de Algas Nocivas , Perciformes , Dorada , Natación
18.
Environ Res ; 182: 109111, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31927300

RESUMEN

Ciguatera fish poisoning (CFP) is one of the most devastating food-borne illnesses caused by fish consumption. Ciguatoxins (CTXs) are potent neurotoxins synthesized by the benthic microalgae Gambierdiscus spp. and Fukuyoa spp. that are transmitted to fish by grazing and predation. Despite the high incidence of CFP, affecting an estimated number of 50,000 persons per year in tropical and subtropical latitudes, the factors underlying CTXs occurrence are still not well understood. Toxin transfer and dynamics in fish and food-webs are complex. Feeding habits and metabolic pathways determine the toxin profile and toxicity of fish, and migratory species may transport and spread the hazard. Furthermore, CTX effect on fish may be a limiting factor for fish recruitment and toxin prevalence. Recently, new occurrences of Gambierdiscus spp. in temperate areas have been concomitant with the detection of toxic fish and CFP incidents in non-endemic areas. CFP cases in Europe have led to implementation of monitoring programs and fisheries restrictions with considerable impact on local economies. More than 400 species of fish can be vectors of CTXs, and most of them are high-valued commercial species. Thus, the risk uncertainty and the spread of Gambierdiscus have serious consequences for fisheries and food safety. Here, we present a critical review of CTXs impacts on fish, fisheries, and humans, based on the current knowledge on CFP incidence and CTXs prevalence in microalgae and fish.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Explotaciones Pesqueras , Animales , Europa (Continente) , Peces , Contaminación de Alimentos , Inocuidad de los Alimentos , Humanos
19.
Toxins (Basel) ; 11(10)2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554162

RESUMEN

Prevalence of marine biotoxins in seafood has been associated with increasing frequency, intensity, and duration of harmful algal blooms, and an increase of the geographical and temporal distribution of harmful algae [...].


Asunto(s)
Enfermedades Transmitidas por los Alimentos/epidemiología , Toxinas Marinas/toxicidad , Alimentos Marinos/envenenamiento , Floraciones de Algas Nocivas , Humanos , Toxinas Marinas/análisis
20.
Mar Environ Res ; 151: 104780, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31514973

RESUMEN

The presence in EU waters of invasive tetrodotoxin (TTX) -harbouring puffer fishes has been receiving increasingly attention due to potential new threats posed by this potent neurotoxin. The present study investigates the occurrence of tetrodotoxin, saxitoxin (STX), and their analogues in two native puffer fish species from the NE Atlantic. High TTX content was detected by LC-MS/MS in several tissues of the Guinean puffer Sphoeroides marmoratus from Madeira Island (Portugal), reaching concentrations as high as 15 mg TTX kg-1 in the digestive tract of a male specimen and 7.4 mg TTX kg-1 in gonads of a female specimen. Several TTX analogues were also detected, including the 4-epi-TTX, 4,9-Anhydro-TTX, 5- 11- deoxyTTX and 6,11-dideoxyTTX. Although at low levels, STX was detected in liver of the Oceanic puffer Lagocephalus lagocephalus. Trace levels of decarbamoylsaxitoxin (dcSTX) were also observed in L. lagocephalus. This study reports the presence of TTX and STX in native fish from EU waters, highlighting the need for a proper understating of the origin, distribution and fate of these toxins in NE Atlantic.


Asunto(s)
Saxitoxina , Tetraodontiformes , Tetrodotoxina , Animales , Océano Atlántico , Cromatografía Liquida , Femenino , Masculino , Portugal , Saxitoxina/aislamiento & purificación , Espectrometría de Masas en Tándem , Tetrodotoxina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...