Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514851

RESUMEN

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Asunto(s)
Bacterias , Suelo , ARN Ribosómico 16S/genética , Brasil , Bacterias/genética , Acidobacteria/genética , Microbiología del Suelo
2.
Microbiol Res ; 274: 127435, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331053

RESUMEN

Soybean-maize are cultivated in different management systems, such as no-tillage and pastures, which presents potential to add organic residues, and it can potentially impacts the soil microbial community present in these systems. Thus, this study aimed to examine the effects of different soybean-maize management practices on the diversity and composition of soil microbial communities. Specifically, 16 S rRNA amplicon sequencing was used to investigate whether the use of pasture species in a fallowing system influences microbial communities in a soybean-maize rotation system, as compared to conventional tillage and no-tillage systems. The results indicate that the inclusion of the pasture species Urochloa brizantha in soybean-maize management systems leads to distinct responses within the soil microbial community. It was found that different soybean-maize management systems, particularly those with U. brizantha, affected the microbial community, likely due to the management applied to this pasture species. The system with 3 years of fallowing before soybean-maize showed the lowest microbial richness (∼2000 operational taxonomic units) and diversity index (∼6.0). Proteobacteria (∼30%), Acidobacteria (∼15%), and Verrucomicrobia (∼10%) were found to be the most abundant phyla in the soil under tropical native vegetation, while soils under cropland had an increased abundance of Firmicutes (∼30% to ∼50%) and Actinobacteria (∼30% to ∼35%). To summarize, this study identified the impacts of various soybean-maize management practices on the soil microbial community and emphasized the advantages of adding U. brizantha as a fallow species.


Asunto(s)
Microbiota , Suelo , Suelo/química , Zea mays/microbiología , Glycine max , Microbiología del Suelo
3.
Arch Microbiol ; 204(12): 730, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434407

RESUMEN

Bacteria have potential to tolerate and reduce metals. This study evaluated the potential of selected bacterial strains in tolerating and reducing chromium (Cr). Six bacterial strains (Rhizobium miluonense LCC01, LCC04, LCC05, and LCC69; Rhizobium pusense LCC43; and Agrobacterium deltaense LCC50) showed tolerance to Cr(VI) (16 and 32 µg mL-1), reduction potential of Cr(VI) (from 50 to 80%), and efficiency in producing exopolysaccharides. Rhizobium pusense LCC43 exhibited the highest tolerance (128 µg mL-1), reduction potential of Cr(VI) (from 80 to 100%), and efficiency in producing exopolysaccharides. These results suggested that this strain may have the potential to be used in the bioremediation of soils contaminated with Cr(VI).


Asunto(s)
Bacterias , Cromo , Oxidación-Reducción , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA