Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1378591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686377

RESUMEN

Introduction: Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods: Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results: In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion: These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.


Asunto(s)
COVID-19 , Quimiocina CXCL9 , Modelos Animales de Enfermedad , Glicosaminoglicanos , Pulmón , SARS-CoV-2 , Animales , Ratones , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicosaminoglicanos/metabolismo , Quimiocina CXCL9/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/inmunología , Pulmón/metabolismo , Inflamación/inmunología , Humanos , Tratamiento Farmacológico de COVID-19 , Ratones Endogámicos C57BL , Femenino
2.
Viruses ; 16(4)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675930

RESUMEN

Inflammation is a protective host response essential for controlling viral replication and promoting tissue repair [...].


Asunto(s)
Inflamación , Virosis , Inflamación/virología , Humanos , Virosis/inmunología , Virosis/virología , Animales , Virus/inmunología , Virus/patogenicidad , Replicación Viral , Interacciones Huésped-Patógeno/inmunología
3.
Reproduction ; 167(5)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467105

RESUMEN

In brief: Congenital ZIKV infection promotes alarming effects on male offspring's reproductive biology. This study showed the presence of the ZIKV antigen in the testis parenchyma, decreased testosterone levels, and sperm abnormalities in male offspring born to infected mothers. Abstract: Infection with ZIKV during pregnancy is associated with fetal developmental problems. Although neurological issues are being explored more in experimental studies, limited research has focused on the reproductive health consequences for offspring born to infected mothers. In this context, this study aimed to assess the impact of ZIKV infection during pregnancy on the testes and sperm of adult male offspring. Female mice were intraperitoneally inoculated with a Brazil strain of ZIKV during the 5.5th day of embryonic gestation. The offspring were evaluated 12 weeks after birth to analyze cellular and molecular changes in the testes and sperm. A novel approach combining variable-angle spectroscopic ellipsometry and machine learning modeling was also introduced for sperm sample analysis. The study revealed the presence of ZIKV protein in the testis parenchyma of adult male offspring born to infected mothers. It was shown that the testes exhibited altered steroidogenesis and inflammatory mediators, in addition to significant issues with spermiogenesis that resulted in sperm with DNA fragmentation, head defects, and protamination failure. Additionally, sperm dielectric properties and artificial intelligence showed potential for rapid identification and classification of sperm samples from infected mice. These findings provide crucial insights into the reproductive risks for men born from ZIKV-infected pregnant women.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Adulto , Masculino , Humanos , Femenino , Embarazo , Animales , Ratones , Infección por el Virus Zika/complicaciones , Inteligencia Artificial , Semen , Biología
4.
Br J Pharmacol ; 181(7): 917-937, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38355144

RESUMEN

Inflammation is elicited by the host in response to microbes, and is believed to be essential for protection against infection. However, we have previously hypothesized that excessive or misplaced inflammation may be a major contributor to tissue dysfunction and death associated with viral and bacterial infections. The resolutive phase of inflammation is a necessary condition to achieve homeostasis after acute inflammation. It is possible that targeting inflammation resolution may be beneficial for the host during infection. In this review, we summarize the evidence demonstrating the expression, roles and effects of the best described pro-resolving molecules in the context of bacterial and viral infections. Pro-resolving molecules play a pivotal role in modulating a spectrum of pathways associated with tissue inflammation and damage during both viral and bacterial infections. These molecules offer a blend of anti-inflammatory, pro-resolving and sometimes anti-infective benefits, all the while circumventing the undesired and immune-suppressive unwanted effects associated with glucocorticoids. Whether these beneficial effects will translate into benefits to patients clearly deserve further investigation.


Asunto(s)
Infecciones Bacterianas , Enfermedades Transmisibles , Humanos , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Enfermedades Transmisibles/tratamiento farmacológico
5.
J Virol ; 98(1): e0110223, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38169294

RESUMEN

Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.


Asunto(s)
Infecciones por Alphavirus , Artritis , Quimiocina CCL2 , Receptores CCR2 , Animales , Ratones , Alphavirus , Infecciones por Alphavirus/inmunología , Artritis/inmunología , Artritis/virología , Quimiocina CCL2/inmunología , Interleucina-6/inmunología , Ratones Endogámicos C57BL , Receptores CCR2/inmunología , Ratones Noqueados , Masculino , Enfermedades Óseas/virología
6.
Biomed Pharmacother ; 170: 115981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091634

RESUMEN

CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-É£ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Ratones , Animales , ARN Interferente Pequeño , Distribución Tisular , Encéfalo , Inmunidad , Quimiocina CXCL12/genética
7.
Viruses ; 15(12)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140675

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 (ß-CoV) betacoronavirus has posed a significant threat to global health. Despite the availability of vaccines, the virus continues to spread, and there is a need for alternative strategies to alleviate its impact. Vitamin D, a secosteroid hormone best known for its role in bone health, exhibits immunomodulatory effects in certain viral infections. Here, we have shown that bioactive vitamin D (calcitriol) limits in vitro replication of SARS-CoV-2 and murine coronaviruses MHV-3 and MHV-A59. Comparative studies involving wild-type mice intranasally infected with MHV-3, a model for studying ß-CoV respiratory infections, confirmed the protective effect of vitamin D in vivo. Accordingly, mice fed a standard diet rapidly succumbed to MHV-3 infection, whereas those on a vitamin D-rich diet (10,000 IU of Vitamin D3/kg) displayed increased resistance to acute respiratory damage and systemic complications. Consistent with these findings, the vitamin D-supplemented group exhibited lower viral titers in their lungs and reduced levels of TNF, IL-6, IL-1ß, and IFN-γ, alongside an enhanced type I interferon response. Altogether, our findings suggest vitamin D supplementation ameliorates ß-CoV-triggered respiratory illness and systemic complications in mice, likely via modulation of the host's immune response to the virus.


Asunto(s)
Virus de la Hepatitis Murina , Neumonía , Ratones , Humanos , Animales , Vitamina D , Pandemias/prevención & control , Virus de la Hepatitis Murina/fisiología , SARS-CoV-2 , Vitaminas/farmacología , Vitaminas/uso terapéutico , Dieta
8.
Inflamm Res ; 72(10-11): 2073-2088, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837557

RESUMEN

OBJECTIVE AND DESIGN: The present study aimed to investigate the neurochemical and behavioral effects of the acute consequences after coronavirus infection through a murine model. MATERIAL: Wild-type C57BL/6 mice were infected intranasally (i.n) with the murine coronavirus 3 (MHV-3). METHODS: Mice underwent behavioral tests. Euthanasia was performed on the fifth day after infection (5 dpi), and the brain tissue was subjected to plaque assays for viral titration, ELISA, histopathological, immunohistochemical and synaptosome analysis. RESULTS: Increased viral titers and mild histological changes, including signs of neuronal degeneration, were observed in the cerebral cortex of infected mice. Importantly, MHV-3 infection induced an increase in cortical levels of glutamate and calcium, which is indicative of excitotoxicity, as well as increased levels of pro-inflammatory cytokines (IL-6, IFN-γ) and reduced levels of neuroprotective mediators (BDNF and CX3CL1) in the mice brain. Finally, behavioral analysis showed impaired motor, anhedonia-like and anxiety-like behaviors in animals infected with MHV-3. CONCLUSIONS: In conclusion, the data presented emulate many aspects of the acute neurological outcomes seen in patients with COVID-19. Therefore, this model may provide a preclinical platform to study acute neurological sequelae induced by coronavirus infection and test possible therapies.


Asunto(s)
COVID-19 , Virus de la Hepatitis Murina , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/metabolismo , Citocinas/metabolismo , COVID-19/patología , Encéfalo/metabolismo
9.
Viruses ; 15(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37896826

RESUMEN

Exacerbated inflammatory responses are a hallmark of severe coronavirus disease 2019 (COVID-19). Zileuton (Zi) is a selective inhibitor of 5-lipoxygenase, an enzyme involved in the production of several inflammatory/pro-resolving lipid mediators. Herein, we investigated the effect of Zi treatment in a severe acute respiratory syndrome (SARS) model. Mouse hepatitis virus (MHV)3-infected mice treated with Zi significantly improved the clinical score, weight loss, cardiopulmonary function, and survival rates compared with infected untreated animals. The protection observed in Zi-treated mice was associated with a lower inflammatory score, reduced dendritic cell-producing tumor necrosis factor (TNF), and increased neutrophil-producing interleukin (IL)-10 in the lungs three days after infection (dpi). At 5 dpi, the lungs of treated mice showed an increase in Th2-, Treg CD4+-, and Treg CD8+-producing IL-10 and reduced Th1 infiltrating cells. Furthermore, similar results were found upon Zi treatment after SARS-CoV-2 infection in transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2), significantly improving the clinical score, weight loss, and lung inflammatory score compared with untreated animals. Our data suggest that Zi protects against developing severe lung disease during SARS induced by betacoronavirus without affecting the host's capacity to deal with infection.


Asunto(s)
COVID-19 , Inhibidores de la Lipooxigenasa , Humanos , Ratones , Animales , SARS-CoV-2 , COVID-19/patología , Pulmón , Ratones Transgénicos , Inmunidad Innata , Pérdida de Peso , Modelos Animales de Enfermedad
10.
Gut Microbes ; 15(2): 2249146, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37668317

RESUMEN

Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Ratones , SARS-CoV-2 , Antibacterianos , Progresión de la Enfermedad
11.
Viruses ; 15(5)2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37243296

RESUMEN

Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.


Asunto(s)
Productos Biológicos , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Chlorocebus aethiops , Células Vero , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Replicación Viral , Antivirales/farmacología , Antivirales/uso terapéutico
12.
Front Immunol ; 14: 1185741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228615

RESUMEN

Innate immunity is the body's first line of defense against infections. Innate immune cells express pattern recognition receptors in distinct cellular compartments that are responsible to detect either pathogens-associated molecules or cellular components derived from damaged cells, to trigger intracellular signaling pathways that lead to the activation of inflammatory responses. Inflammation is essential to coordinate immune cell recruitment, pathogen elimination and to keep normal tissue homeostasis. However, uncontrolled, misplaced or aberrant inflammatory responses could lead to tissue damage and drive chronic inflammatory diseases and autoimmunity. In this context, molecular mechanisms that tightly regulate the expression of molecules required for the signaling of innate immune receptors are crucial to prevent pathological immune responses. In this review, we discuss the ubiquitination process and its importance in the regulation of innate immune signaling and inflammation. Then, we summarize the roles of Smurf1, a protein that works on ubiquitination, on the regulation of innate immune signaling and antimicrobial mechanisms, emphasizing its substrates and highlighting its potential as a therapeutic target for infectious and inflammatory conditions.


Asunto(s)
Transducción de Señal , Ubiquitina , Humanos , Ubiquitina/metabolismo , Inmunidad Innata , Inflamación , Ubiquitina-Proteína Ligasas/metabolismo
13.
Cells ; 12(8)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37190040

RESUMEN

Dysregulated inflammatory responses are often correlated with disease severity during viral infections. Annexin A1 (AnxA1) is an endogenous pro-resolving protein that timely regulates inflammation by activating signaling pathways that culminate with the termination of response, clearance of pathogen and restoration of tissue homeostasis. Harnessing the pro-resolution actions of AnxA1 holds promise as a therapeutic strategy to control the severity of the clinical presentation of viral infections. In contrast, AnxA1 signaling might also be hijacked by viruses to promote pathogen survival and replication. Therefore, the role of AnxA1 during viral infections is complex and dynamic. In this review, we provide an in-depth view of the role of AnxA1 during viral infections, from pre-clinical to clinical studies. In addition, this review discusses the therapeutic potential for AnxA1 and AnxA1 mimetics in treating viral infections.


Asunto(s)
Anexina A1 , Virosis , Humanos , Anexina A1/metabolismo , Inflamación/metabolismo , Transducción de Señal
14.
Biomolecules ; 13(3)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979510

RESUMEN

The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Animales , Ratones , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Células 3T3 NIH , Antiinfecciosos/farmacología , Antiinfecciosos/química , Anuros , Antibacterianos/farmacología , Antibacterianos/análisis , Pruebas de Sensibilidad Microbiana , Piel/química
15.
Clin Sci (Lond) ; 137(7): 543-559, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36972169

RESUMEN

Poor disease outcomes and lethality are directly related to endothelial dysfunction in betacoronavirus infections. Here, we investigated the mechanisms underlying the vascular dysfunction caused by the betacoronaviruses MHV-3 and SARS-CoV-2. Wild-type C57BL/6 (WT) and knockout mice for inducible nitric oxide synthase (iNOS-/-) or TNF receptor 1 (TNFR1-/-) were infected with MHV-3, and K18-hACE2 transgenic mice expressing human ACE2 were infected with SARS-CoV-2. Isometric tension was used to evaluate vascular function. Protein expression was determined by immunofluorescence. Tail-cuff plethysmography and Doppler were used to assess blood pressure and flow, respectively. Nitric oxide (NO) was quantified with the DAF probe. ELISA was used to assess cytokine production. Survival curves were estimated using Kaplan-Meier. MHV-3 infection reduced aortic and vena cava contractility, arterial blood pressure, and blood flow, resulting in death. Resistance mesenteric arteries showed increased contractility. The contractility of the aorta was normalized by removing the endothelium, inhibiting iNOS, genetically deleting iNOS, or scavenging NO. In the aorta, iNOS and phospho-NF-kB p65 subunit expression was enhanced, along with basal NO production. TNF production was increased in plasma and vascular tissue. Genetic deletion of TNFR1 prevented vascular changes triggered by MHV-3, and death. Basal NO production and iNOS expression were also increased by SARS-CoV-2. In conclusion, betacoronavirus induces an endothelium-dependent decrease in contractility in macro-arteries and veins, leading to circulatory failure and death via TNF/iNOS/NO. These data highlight the key role of the vascular endothelium and TNF in the pathogenesis and lethality of coronaviruses.


Asunto(s)
COVID-19 , Choque , Ratones , Humanos , Animales , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , SARS-CoV-2/metabolismo , Ratones Endogámicos C57BL , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Ratones Transgénicos , Arterias Mesentéricas/metabolismo
16.
Nat Commun ; 14(1): 199, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639383

RESUMEN

Orally available antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary because of the continuous circulation of new variants that challenge immunized individuals. Because severe COVID-19 is a virus-triggered immune and inflammatory dysfunction, molecules endowed with both antiviral and anti-inflammatory activity are highly desirable. We identified here that kinetin (MB-905) inhibits the in vitro replication of SARS-CoV-2 in human hepatic and pulmonary cell lines. On infected monocytes, MB-905 reduced virus replication, IL-6 and TNFα levels. MB-905 is converted into its triphosphate nucleotide to inhibit viral RNA synthesis and induce error-prone virus replication. Coinhibition of SARS-CoV-2 exonuclease, a proofreading enzyme that corrects erroneously incorporated nucleotides during viral RNA replication, potentiated the inhibitory effect of MB-905. MB-905 shows good oral absorption, its metabolites are stable, achieving long-lasting plasma and lung concentrations, and this drug is not mutagenic nor cardiotoxic in acute and chronic treatments. SARS-CoV-2-infected hACE-mice and hamsters treated with MB-905 show decreased viral replication, lung necrosis, hemorrhage and inflammation. Because kinetin is clinically investigated for a rare genetic disease at regimens beyond the predicted concentrations of antiviral/anti-inflammatory inhibition, our investigation suggests the opportunity for the rapid clinical development of a new antiviral substance for the treatment of COVID-19.


Asunto(s)
Antivirales , COVID-19 , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Cinetina/farmacología , Inflamación/tratamiento farmacológico , Nucleótidos , Replicación Viral
17.
Immunology ; 168(3): 444-458, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36164989

RESUMEN

Arthralgia is a hallmark of chikungunya virus (CHIKV) infection and can be very debilitating and associated with a robust local inflammatory response. Many pathophysiological aspects associated with the disease remain to be elucidated. Here, we describe a novel model of CHIKV infection in immunocompetent mice and evaluate the role of tumour necrosis factor in the pathogenesis of the disease. C57BL/6 wild type (WT) or TNF receptor 1 deficient (TNFR1-/- ) mice were inoculated with 1 × 106 PFU of CHIKV in the paw. Alternatively, etanercept was used to inhibit TNF in infected WT mice. Hypernociception, inflammatory and virological analysis were performed. Inoculation of CHIKV into WT mice induced persistent hypernociception. There was significant viral replication in target organs and local production of inflammatory mediators in early time-points after infection. CHIKV infection was associated with specific humoral IgM and IgG responses. In TNFR1-/- mice, there was a decrease in the hypernociception threshold, which was associated with a milder local inflammatory response in the paw but delayed viral clearance. Local or systemic treatment with etanercept reduced CHIKV-induced hypernociception. This is the first study to describe hypernociception, a clinical correlation of arthralgia, in immunocompetent mice infected with CHIKV. It also demonstrates the dual role of TNF in contributing to viral clearance but driving tissue damage and hypernociception. Inhibition of TNF may have therapeutic benefits but its role in viral clearance suggests that viral levels must be monitored in CHIKV-infected patients and that TNF inhibitors should ideally be used in combination with anti-viral drugs.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Ratones , Fiebre Chikungunya/patología , Receptores Tipo I de Factores de Necrosis Tumoral , Etanercept , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa , Replicación Viral , Artralgia
18.
Elife ; 112022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293862

RESUMEN

Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.


Asunto(s)
Anexina A1 , Dengue , Animales , Anexina A1/metabolismo , Dengue/tratamiento farmacológico , Humanos , Inflamación/patología , Ratones , Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
19.
Mol Cell Endocrinol ; 542: 111519, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34843900

RESUMEN

GATA-1 is a transcription factor from the GATA family, which features zinc fingers for DNA binding. This protein was initially identified as a crucial regulator of blood cell differentiation, but it is currently known that the Gata-1 gene expression is not limited to this system. Although the testis is also a site of significant GATA-1 expression, its role in testicular cells remains considerably unexplored. In the present study, we evaluated the testicular morphophysiology of adult ΔdblGATA mice with a mutation in the GATA-1 protein. Regarding testicular histology, GATA-1 mutant mice exhibited few changes in the seminiferous tubules, particularly in germ cells. A high proportion of differentiated spermatogonia, an increased number of apoptotic pre-leptotene spermatocytes (Caspase-3-positive), and a high frequency of sperm head defects were observed in ΔdblGATA mice. The main differences were observed in the intertubular compartment, as ΔdblGATA mice showed several morphofunctional changes in Leydig cells. Reduced volume, increased number and down-regulation of steroidogenic enzymes were observed in ΔdblGATA Leydig cells. Moreover, the mutant animal showed lower serum testosterone concentration and high LH levels. These results are consistent with the phenotypic and biometric data of mutant mice, i.e., shorter anogenital index and reduced accessory sexual gland weight. In conclusion, our findings suggest that GATA-1 protein is an important factor for germ cell differentiation as well as for the steroidogenic activity in the testis.


Asunto(s)
Espermatogonias , Testículo , Animales , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Mutación/genética , Túbulos Seminíferos , Espermatogonias/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
20.
Planta Med ; 88(13): 1123-1131, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34763354

RESUMEN

cis-Aconitic acid is a constituent from the leaves of Echinodorus grandiflorus, a medicinal plant traditionally used in Brazil to treat inflammatory conditions, including arthritic diseases. The present study aimed to investigate the anti-arthritic effect of cis-aconitic acid in murine models of antigen-induced arthritis and monosodium urate-induced gout. The possible underlying mechanisms of action was evaluated in THP-1 macrophages. Oral treatment with cis-aconitic acid (10, 30, and 90 mg/kg) reduced leukocyte accumulation in the joint cavity and C-X-C motif chemokine ligand 1 and IL-1ß levels in periarticular tissue. cis-Aconitic acid treatment reduced joint inflammation in tissue sections of antigen-induced arthritis mice and these effects were associated with decreased mechanical hypernociception. Administration of cis-aconitic acid (30 mg/kg p. o.) also reduced leukocyte accumulation in the joint cavity after the injection of monosodium urate crystals. cis-Aconitic acid reduced in vitro the release of TNF-α and phosphorylation of IκBα in lipopolysaccharide-stimulated THP-1 macrophages, suggesting that inhibition of nuclear factor kappa B activation was an underlying mechanism of cis-aconitic acid-induced anti-inflammatory effects. In conclusion, cis-aconitic acid has significant anti-inflammatory effects in antigen-induced arthritis and monosodium urate-induced arthritis in mice, suggesting its potential for the treatment of inflammatory diseases of the joint in humans. Additionally, our findings suggest that this compound may contribute to the anti-inflammatory effect previously reported for E. grandiflorus extracts.


Asunto(s)
Alismataceae , Gota , Humanos , Ratones , Animales , Ácido Aconítico/farmacología , Inhibidor NF-kappaB alfa , Ácido Úrico , Lipopolisacáridos , FN-kappa B , Factor de Necrosis Tumoral alfa , Ligandos , Alismataceae/química , Gota/inducido químicamente , Gota/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Quimiocinas , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA