Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38668928

RESUMEN

PURPOSE: Thyroid cancer is one of the most common cancers worldwide, with ultrasound-guided biopsy being the method of choice for its early detection. The accuracy of diagnostics directly depends on the qualifications of the ultrasonographers, whose performance can be enhanced through training with phantoms. The aim of this study is to propose a reproducible methodology for designing a neck phantom for ultrasound training and research from widely available materials and to validate its applicability. METHODS: The phantom was made using polyvinyl chloride mixed with additives to reproduce different levels of brightness on ultrasound screens. 3D printing and casting were used to create the neck model and various structures of the neck, including bones, cartilage, arteries, veins, lymph nodes, thyroid gland, and soft tissues. The small objects, such as tumor and lymph node models, were shaped manually. All the phantom's materials were carefully selected to match the ultrasonic speed and attenuation values of real soft tissues and bones. RESULTS: The thyroid gland contains models of a cancerous and cystic nodule. In the neck, there are models of carotid arteries and jugular veins filled with ultrasound-transparent gel. Additionally, there are replicas of lymph nodes and bone structures such as hyoid bone, thyroid cartilage, trachea, and vertebrae. The resulting phantom covers the entire neck area and has been positively received by practicing ultrasound specialists. CONCLUSIONS: The proposed manufacturing technology offers a reliable and cost-effective approach to produce an anthropomorphic neck phantom for ultrasound diagnosis of the thyroid gland. The realistic simulation provided by the phantom enhances the quality and accuracy of ultrasound examinations, contributing to better training for medical professionals and improved patient care. Subsequent research efforts can concentrate on refining the fabrication process and exploring additional features to enhance the phantom's capabilities.

2.
Int J Comput Assist Radiol Surg ; 19(1): 151-161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37099215

RESUMEN

PURPOSE: The WHO reported an increasing trend in the number of new cases of breast cancer, making it the most prevalent cancer in the world. This fact necessitates the availability of highly qualified ultrasonographers, which can be achieved by the widespread implementation of training phantoms. The goal of the present work is to develop and test an inexpensive, accessible, and reproducible technology for creating an anatomical breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. METHODS: We used FDM 3D printer and PLA plastic for printing an anatomical breast mold. We made a phantom using a mixture of polyvinyl chloride plastisol, graphite powder, and metallic glitter to simulate soft tissues and lesions. Various degrees of elasticity were imparted using plastisols of stiffness ranging from 3 to 17 on the Shore scale. The lesions were shaped by hand. The materials and methods used are easily accessible and reproducible. RESULTS: Using the proposed technology, we have developed and tested a basic, differential, and elastographic versions of the breast phantom. The three versions of the phantom are anatomical and intended for use in medical education: the basic version is for practicing primary hand-eye coordination skills; the differential one is for practicing the differential diagnosis skills; the elastographic version helps developing the skills needed for assessing the stiffness of tissues. CONCLUSION: The proposed technology allows the creation of breast phantoms for practicing hand-eye coordination and develop the critical skills for navigation and assessment of the shape, margins, and size of the lesion, as well as performing an ultrasound-guided biopsy. It is cost-effective, reproducible, and easily implementable, and could be instrumental in generating ultrasonographers with crucial skills for accurate diagnosis of breast cancer, especially in low-resource settings.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Humanos , Femenino , Cloruro de Polivinilo , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Elasticidad
3.
Phys Eng Sci Med ; 46(4): 1765-1778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796368

RESUMEN

The paper addresses a crucial challenge in medical radiology and introduces a novel general approach, which utilises applied mathematics and information technology techniques, for aberration correction in ultrasound diagnostics. Ultrasound imaging of inhomogeneous media inherently suffers from variations in ultrasonic speed between tissue. The characteristics of aberrations are unique to each patient due to tissue morphology. This study proposes a new phase aberration correction method based on the Fourier transform and leveraging of the synthetic aperture mode. The proposed method enables correction after the emission and reception of ultrasonic wave, allowing for the estimation of aberration profiles for different parts of the sonogram. To demonstrate the method's performance, this study included the conducting of experiments using a commercially available quality control phantom, an ex-vivo temporal human bone, and specially designed distortion layers. At a frequency of 2 MHz, the experiments demonstrated an increase of two-and-three-quarters in echo signal intensity and a decrease of nearly two-fold in the width of the angular distribution compared to the pre-correction state. However, it is important to note that the implementation of the method has a limitation, as it requires an aperture synthesis mode and access to raw RF data, which restricts use in common scanners. To ensure the reproducibility of the results, this paper provides public access to an in-house C + + code for aberration correction following the proposed method, as well as the dataset used in this study.


Asunto(s)
Ondas Ultrasónicas , Ultrasonido , Humanos , Reproducibilidad de los Resultados , Ultrasonografía/métodos , Fantasmas de Imagen
4.
Ultrasound Med Biol ; 48(2): 323-332, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34742597

RESUMEN

The performance of therapeutic ultrasonic (TUS) devices has a high degree of variability because of the fragility of the equipment (its transducer in particular) and its handling. These facts raise doubts about the effectiveness and safety of treatments employing such devices. Currently there is no simple way to adequately verify the performance of these devices. In our first experiments, we used a thermochromatic test body (typically a cylindrical plate 3.7 cm in diameter and 5.8 mm high) irradiated with therapeutic transducers driven by a standard radiofrequency (RF) generator. Results revealed a linear relationship between the thermal image areas, generated by the transducer's irradiation, and their respective effective radiation areas (ERAs), suggesting a good correlation. With five 3-MHz transducers, our group also observed the linear relationship using commercial TUS RF driving devices. In the present work, we used four 1-MHz transducers with their respective TUS RF driving devices and verified that there is a linear relationship between the thermal images and the ERAs at intensities of 1.0 ± 0.1 and 0.5 ± 0.05 W/cm2. The linear relationship obtained at both intensities confirms the suggestion that these thermochromatic test bodies can be used as the first evaluation of the ERAs and can monitor their changes with use. Moreover, if a previous assessment of the ERA and transducer intensities is performed, it is possible to follow the variation in ERA simply by monitoring the test body thermal stain.


Asunto(s)
Terapia por Ultrasonido , Ultrasonido , Diseño de Equipo , Transductores
5.
Ultrasound Med Biol ; 48(1): 111-123, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34674885

RESUMEN

Blood coagulation is a process involving several chemical reactions governed by coagulation factors, during which the shear elastic coefficient, µ, varies as the medium transitions from liquid to gel phase. This work used ultrasound to measure µ during the clotting of human plasma samples by tracking the motion of a glass sphere located inside a cuvette filled with the plasma. A 2.03 MHz ultrasonic system generated an impulsive acoustic radiation force acting on the sphere, and a 4.89 MHz pulse-echo ultrasonic system tracked the sphere displacement induced by that force. Measurements of µ were determined by fitting a µ-dependent theoretical model to the motion waveform of the sphere immersed in clotting normal plasma and plasma samples with fibrinogen (FI) concentrations of 1.2 (FI-deficiency) and 3.6 (FI-normal) g/L. For normal plasma, µ started at 14.22 Pa and increased rapidly until 2 min, then slowly until it reached 210.23 Pa at 35 min after the clotting process started. A similar trend was exhibited in plasma samples with FI concentrations of 1.2 and 3.6 g/L, with µ reaching 120.55 and 679.42 Pa, respectively. A theoretical model, related to the kinetics of clot-structure formation, describes the time changes of µ for the clotting plasma samples. The sphere-motion-based acoustic-radiation-force approach allowed us to measure the shear elastic coefficient during the coagulation process of plasma samples with normal and deficient FI concentrations. Our results suggest that the method used in this study is capable of being used to detect bleeding disorders.


Asunto(s)
Fibrinógeno , Hemostáticos , Acústica , Coagulación Sanguínea , Humanos , Movimiento (Física)
6.
Biomed Phys Eng Express ; 7(5)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34340223

RESUMEN

The quantitative ultrasound technique was used to evaluate bone-mimicking phantoms; however, these phantoms do not mimic the intermediate stages of cortical bone healing. We propose using windshield glass as an original material to produce phantoms that mimic the characteristics of three different stages of cortical bone healing. This material was processed via a route that included breaking, grinding, compacting, drying, and sintering in four temperature groups: 625 °C, 645 °C, 657 °C, and 663 °C. The parameters evaluated were the ultrasonic longitudinal phase velocity (cL), corrected (αc) ultrasonic attenuation coefficient, and bulk density (ρs). The results showed that the mean values ofcL,αc,andρsvaried from 2, 398 to 4, 406 m·s-1, 3 to 10 dB·cm-1, and 1, 563 to 2, 089 kg·m-3, respectively. The phantoms exhibited properties comparable with the three stages of cortical bone healing and can be employed in diagnostic and therapeutic studies using ultrasound.


Asunto(s)
Ultrasonido , Hueso Cortical/diagnóstico por imagen , Fantasmas de Imagen , Ultrasonografía
7.
Ultrasonics ; 116: 106515, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34252874

RESUMEN

While some diseases reduce fibrinogen concentration, others increase the amount of this clotting factor in the blood. Some studies have shown that the fibrinogen concentration in the blood is related to the stiffness of the formed clot. Hence, the aim of this study was to employ an ultrasonic method based on impulsive acoustic radiation force (IARF) to identify the fibrinogen concentration (coagulation factor I) in a plasma sample by means of peak-displacement (PD), time of peak-displacement (TPD), and shear modulus (µ) as well as to identify the change of plasma samples during the clot formation process. The IARF-based ultrasonic system transmitted bursts with a frequency of 2.03 MHz, duration of 246.31 µs, amplitude of 118 VPP, and pulse with 1.25 Hz repetition frequency to generate an IARF on a glass sphere (2.99 mm in diameter and 2500 kg/m3 in density) embedded in a plasma sample, causing a displacement that was monitored by a pulse-echo system with a center frequency of 4.89 MHz. The values of the shear moduli were 124.14 ± 3.02, 556.99 ± 11.76, and 670.39 ± 9.77 Pa, for fibrinogen concentrations of 1.2, 2.4, and 3.6 g/L 20 to 36 min after the beginning of the coagulation process. The TPD values obtained in the same period were 5.28 ± 0.09, 3.03 ± 0.02, and 2.83 ± 0.01 s. The results indicate that an IARF-based ultrasonic system can be used clinically because it uses small amounts of plasma and has the ability to detect differences in PD, TPD, and µ as a function of fibrinogen concentrations.

8.
Ultrasound Med Biol ; 47(3): 454-470, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33349514

RESUMEN

Supersonic shear imaging is a non-invasive technique used for detecting physiologic and pathologic changes in biological tissues. In this study, supersonic shear imaging was used to measure and compare shear wave speed (cs) and normalized elastic modulus (EN) values of skin with and skin without dermal striae (DS) in vivo. The values were measured at angles of 0°, 45°, 90° and 315° to the skin tension lines. In the presence of DS, a statistically significant reduction in the elasticity dermis was observed (p value <0.05). The mean values of cs and EN for STLs were higher in normal skin at 45° (4.26 ± 1.05 m/s and 56.23 ± 25.31 kPa) and 90° (4.26 ± 0.55 m/s and 54.91 ± 14.22 kPa), and those for DS were also higher at 45° (3.59 ± 0.72 m/s and 42.71 ± 27.97 kPa) and 90° (3.52 ± 0.65 m/s and 42.34 ± 31.68 kPa) than at other angles. Supersonic shear imaging was found to be a promising technique in the study of skin with DS. The data obtained in this study are expected to be relevant for future studies using shear wave elastography for the aforementioned purpose.


Asunto(s)
Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Piel/diagnóstico por imagen , Adulto , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Humanos , Masculino , Piel/patología , Piel/fisiopatología
9.
Skin Res Technol ; 26(4): 465-475, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31944400

RESUMEN

BACKGROUND AND OBJECTIVE: The improvement in the appearance of the skin with dermal striae (DS) is currently eval-uated by invasive methods, such as biopsy. This study evaluates whether high-resolution ultrasound (HRUS) could be used to identify skin lesions in vivo caused by DS, using 2D images and measuring the thickness of the dermal layer. METHODS: High-resolution ultrasound at frequencies of 20 and 30 MHz was used in this study in ten volunteers with DS. The thickness of the skin layers was estimated by tracing five vertical lines from epidermis (EP) to dermis (DE) and DE to hypodermis (H) surface. RESULTS: The dermal lesions caused by striae appeared in ultrasonic images as poor echo areas. The average normal DE thickness varied from 1.07 to 1.65 mm, while the DE thickness with DS varied between 0.35 and 1.33 mm. A statistically significant reduction in the DE thickness was found (P-value < .05) in the presence of DS. The mean values of the EP thickness without and with DS were 0.12 ± 0.03 mm and 0.11 ± 0.02 mm, respec-tively. A total of 90.00% of the EP-related groups did not present the normal distribu-tion (P-value < .05). CONCLUSIONS: High-resolution ultrasound permitted the visualization of the three skin layers and the dermal lesions caused by striae. The dermal layer thicknesses with striae were thinner than those without. Therefore, ultrasound 2D imaging has shown to be a promising and financially feasible tool to be used as a noninvasive diagnostic method for evaluating therapeutic protocols used in the treatment of these dermal conditions.


Asunto(s)
Epidermis , Piel , Epidermis/diagnóstico por imagen , Humanos , Piel/diagnóstico por imagen , Ultrasonografía
10.
Ultrasonics ; 90: 144-152, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29966842

RESUMEN

The purpose of this work was to obtain an anthropomorphic phantom with acoustic properties similar to those of breast tissue, possessing lactiferous duct-like structures, which would be a first for this type of phantom. Breast lesions usually grow in glandular tissues or lactiferous ducts. Shape variations in these structures are detectable by using ultrasound imaging. To increase early diagnosis, it is important to develop computer-aided diagnosis (CAD) systems and improve medical training. Using tissue-like materials that mimic known internal structures can help achieve both of these goals. However, most breast ultrasound phantoms described in the literature emulate only fat tissues and lesion-like masses. In addition, commercially available phantoms claim to be realistic, but do not contain lactiferous duct structures. In this work, we collected reference images from both breasts of ten healthy female volunteers aged between 20 and 30 years using a 10 MHz linear transducer of a B-mode medical ultrasound system. Histograms of the grey scale distribution of each tissue component of interest, the grey level means, and standard deviations of the regions of interest were obtained. Phantoms were produced using polyvinyl chloride plastisol (PVCP) suspensions. The lactiferous duct-like structures were prepared using pure PVCP. Solid scatterers, such as alumina (mesh #100) and graphite powders (mesh #140) were added to the phantom matrix to mimic glandular and fat tissue, respectively. The phantom duct-like structure diameters observed on B-mode images (1.92 mm ±â€¯0.44) were similar to real measures obtained with a micrometer (2.08 mm ±â€¯0.23). The phantom ducts are easy to produce and are largely stable for at least one year. This phantom allows the researchers to elaborate the structure at their will and may be used in training and as a reference for development of CAD systems.


Asunto(s)
Mama/anatomía & histología , Mama/diagnóstico por imagen , Glándulas Mamarias Humanas/anatomía & histología , Glándulas Mamarias Humanas/diagnóstico por imagen , Fantasmas de Imagen , Plastificantes/química , Cloruro de Polivinilo/química , Ultrasonografía Mamaria/métodos , Femenino , Humanos , Ensayo de Materiales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Ultrasonography ; 37(1): 3-15, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28607322

RESUMEN

This review aimed to describe the state of the art in muscle-tendon unit (MTU) assessment by supersonic shear wave imaging (SSI) elastography in states of muscle contraction and stretching, during aging, and in response to injury and therapeutic interventions. A consensus exists that MTU elasticity increases during passive stretching or contraction, and decreases after static stretching, electrostimulation, massage, and dry needling. There is currently no agreement regarding changes in the MTU due to aging and injury. Currently, the application of SSI for the purpose of diagnosis, rehabilitation, and physical training remains limited by a number of issues, including the lack of normative value ranges, the lack of consensus regarding the appropriate terminology, and an inadequate understanding of the main technical limitations of this novel technology.

12.
Res. Biomed. Eng. (Online) ; 33(3): 218-228, Sept. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-896186

RESUMEN

Abstract Introduction In the last 28 years, the scientific community has been using elastography to evaluate the mechanical properties of biological tissue. The aim of this work was the optimization of the UDmV method, presented in Part I of the series, by means of modifying the technique employed to generate the reference sine and cosine functions, used for phase-quadrature demodulation, and determining how this modification improved the performance of the method. Additionally, the UDmV was employed to characterize the acoustic and mechanical properties of a 7% gelatin phantom. Methods A focused transducer, T F, with a nominal frequency of 2.25 MHz, was used to induce the shear waves, with frequency of 97.644 Hz. Then, the modified UDmV method was used to extract the phase and quadrature components from ultrasonic RF echo-signals collected from four positions along the propagation path of the shear wave, which allowed the investigation of the medium vibration caused by wave propagation. The phase velocity, c s, and attenuation, α s, of the phantom were measured and employed in the calculation of shear modulus, μ, and viscosity, η. Results The computational simulation demonstrated that the modification in UDmV method resulted in more accurate and precise estimates of the initial phases of the reference sinusoidal functions used for phase-quadrature demodulation. The values for c s and μ of 1.31 ± 0.01 m·s-1 and 1.66 ± 0.01 kPa, respectively, are very close to the values found in the literature (1.32 m·s-1 and 1.61 kPa) for the same material. Conclusion The UDmV method allowed estimating of the acoustic and viscoelastic parameters of phantom.

13.
Res. Biomed. Eng. (Online) ; 33(1): 42-49, Mar. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-842478

RESUMEN

Abstract Introduction Therapeutic ultrasound (TUS) is a widespread modality in physiotherapy, and the water bag technique is a coupling method employed in the presence of anatomical irregularities in the treatment area. The aim of the present study is to evaluate the acoustic attenuation of the water bag and its effectiveness as a TUS coupling agent. Methods The rated output powers (ROPs) of the TUS equipment were evaluated based on IEC 61689. Then, a radiation force balance was used to measure ROP with and without a water bag (latex and nitrile gloves filled with deionized water) between a TUS transducer and the cone-shaped target of the balance. Each experiment was performed five times for each nominal power (0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 W) and in the following configurations: without the water bag (A), with nitrile gloves and with (B) and without (C) a height controller, and latex gloves with (D) and without (E) height controller. ROPs obtained in different media were compared. Results The highest relative error of ROP was 16.72% for 0.5 W. Although the power values of the equipment were within the range recommended by IEC, there was a significant difference between the ROP values measured with A and with B, C and D. Conclusion As intensity differences below 0.5 W/cm2 are considered clinically not relevant, conditions A, B, C, D, or E can be used interchangeably.

14.
Ultrasonics ; 70: 98-106, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27153374

RESUMEN

Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast.


Asunto(s)
Materiales Biomiméticos/química , Neoplasias de la Mama/diagnóstico por imagen , Mamografía/instrumentación , Fantasmas de Imagen , Plastificantes/química , Cloruro de Polivinilo/química , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Ensayo de Materiales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...