Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 25(18): 10633-8, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19694416

RESUMEN

Changes in the sign of differential surface stress of gold-coated cantilevers produced by thiol-derivatized single-stranded DNA immobilization are observed, depending on the method used to deposit the gold. While the DNA immobilization on e-beam gold-coated cantilevers produces a compressive differential surface stress in the metallic layer, the opposite is observed for resistively coated cantilevers under the same immobilization conditions. The gold films exhibit quite a similar morphology, and the immobilization differences seem to be related to the charge state of the metallic layer surface. This in turn produces a different distribution of the orientation of the DNA strands on the gold layer. A tentative explanation for the observed effect is proposed.


Asunto(s)
ADN de Cadena Simple/química , Oro/química , Estrés Mecánico , Secuencia de Bases , ADN de Cadena Simple/genética , Hibridación de Ácido Nucleico , Compuestos de Sulfhidrilo , Volatilización
2.
Phys Rev Lett ; 94(21): 217206, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-16090346

RESUMEN

In this Letter, we experimentally show that the room temperature ferromagnetism in the Mn-Zn-O system recently observed is associated with the coexistence of Mn(3+) and Mn(4+) via a double-exchange mechanism. The presence of the ZnO around MnO(2) modifies the kinetics of MnO(2)-->Mn(2)O(3) reduction and favors the coexistence of both Mn oxidation states. The ferromagnetic phase is associated with the interface formed at the Zn diffusion front into Mn oxide, corroborated by preparing thin film multilayers that exhibit saturation magnetization 2 orders of magnitude higher than bulk samples.

3.
Nanotechnology ; 16(2): 214-8, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21727425

RESUMEN

The magnetic properties of the system MnZnO prepared by conventional ceramic procedures using ZnO and MnO(2) starting powders are studied and related to the nanostructure. Thermal treatment at 500 °C produces a ferromagnetic phase, although this temperature is not high enough to promote proper sintering; thus the thermally treated compact shows brittle characteristics of unreacted and poorly densified ceramic samples. Scanning electron microscopy and x-ray analysis reveal the appearance of a new phase, most probably related to the diffusion of Zn into MnO(2) oxide nanocrystals. The magnetic properties deviate considerably from what would be expected of an unreacted mixture of ZnO (diamagnetic) and MnO(2) particles (paramagnetic above 100 K and anti-ferromagnetic below that temperature), exhibiting a ferromagnetic like behaviour from 5 to 300 K and beyond mixed with a paramagnetic component. The ferromagnetic phase seems to be originated by diffusion at the nanoscale of Zn into MnO(2) grains. The Curie temperature of the ferromagnetic phase, once the paramagnetic component has been subtracted from the hysteresis loops, is measured to be 450 K. EPR resonance experiments from 100 to 600 K confirm a ferromagnetic to paramagnetic like transition above room temperature for these materials.

4.
Phys Rev Lett ; 91(2): 026802, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12906499

RESUMEN

Conductance histograms of aluminum and gold nanocontact rupture are studied experimentally and simulated using embedded atom potentials to assess the interplay between electronic and structural properties at room temperature. Our results reveal a crossover from quantized conductance structures to crystalline faceting or geometric shell/subshell structures at 300 K. The absence of electronic shell structure in gold and aluminum is in stark contrast with the behavior of alkaline metal nanowires which emulate their cluster counterparts. Semiclassical arguments suggest why rapid dominance of ionic structures takes place, and possible nanowire architectures are proposed in consistency with both the experimental and simulated nanocontact data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA