Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Sci Total Environ ; 929: 172586, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657802

RESUMEN

In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and toxicity on marine organisms. Our previous results showed that embryos of the sea urchin Paracentrotus lividus (Lmk) exposed to poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) showed delay of their development and morphological malformations, also affecting at the molecular levels the expression of several genes involved in different functional responses. In the present work for the first time, we tested the effects of five microplastics (MPs) obtained from BPs such as PBS, poly(butylene succinate), PBSA, poly(butylene succinate-co-butylene adipate), PCL, PHB and PLA, upon grazing activity of the sea urchin revealed by: i. histological analysis seeing at the gonadic tissues; ii. morphological analysis of the deriving embryos; iii. molecular analyses on these embryos to detect variations of the gene expression of eighty-seven genes involved in stress response, detoxification, skeletogenesis, differentiation and development. All these results will help in understanding how MP accumulated inside various organs in the adult sea urchins, and more in general in marine invertebrates, could represent risks for the marine environment.


Asunto(s)
Paracentrotus , Poliésteres , Contaminantes Químicos del Agua , Animales , Paracentrotus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Plásticos Biodegradables , Embrión no Mamífero/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Polímeros
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338963

RESUMEN

The Mediterranean purple sea urchin Paracentrotus lividus (Lamarck 1816) is a remarkable model system for molecular, evolutionary and cell biology studies, particularly in the field of developmental biology. We sequenced the genome, performed a de novo assembly, and analysed the assembly content. The genome of P. lividus was sequenced using Illumina NextSeq 500 System (Illumina) in a 2 × 150 paired-end format. More than 30,000 open reading frames (ORFs), (more than 8000 are unique), were identified and analysed to provide molecular tools accessible for the scientific community. In particular, several genes involved in complex innate immune responses, oxidative metabolism, signal transduction, and kinome, as well as genes regulating the membrane receptors, were identified in the P. lividus genome. In this way, the employment of the Mediterranean sea urchin for investigations and comparative analyses was empowered, leading to the explanation of cis-regulatory networks and their evolution in a key developmental model occupying an important evolutionary position with respect to vertebrates and humans.


Asunto(s)
Paracentrotus , Humanos , Animales , Paracentrotus/genética , Paracentrotus/metabolismo , Inmunidad Innata , Evolución Molecular
3.
Reprod Biol Endocrinol ; 22(1): 9, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183116

RESUMEN

In Italy the fertility rate is very low, and an increasing number of patients are infertile and require treatments. The Italian Law concerning the safety of patient care, and the professional liability of health professionals, indicates that health professionals must comply with the recommendations set out in the guidelines developed by public and private bodies and institutions, as well as scientific societies and technical-scientific associations of the health professions, except for specific cases. Unfortunately, no guideline for the diagnosis and the management of infertility is currently available in Italy. In 2019, the Italian Society of Human Reproduction pointed out the need to produce Italian guidelines and subsequently approved the establishment of a multidisciplinary and multiprofessional working group (MMWG) to develop such a guideline. The MMWG was representative of 5 scientific societies, one national federation of professional orders, 3 citizens' and patients' associations, 5 professions (including lawyer, biologist, doctor, midwife, and psychologist), and 3 medical specialties (including medical genetics, obstetrics and gynecology, and urology). The MMWG chose to adapt a high-quality guideline to the Italian context instead of developing one from scratch. Using the Italian version of the Appraisal of Guidelines for Research and Evaluation II scoring system, the National Institute of Clinical Excellence guidelines were selected and adapted to the Italian context. The document was improved upon by incorporating comments and suggestions where needed. This study presents the process of adaptation and discusses the pros and cons of the often-neglected choice of adapting rather than developing new guidelines.


Asunto(s)
Ginecología , Infertilidad , Femenino , Embarazo , Humanos , Infertilidad/diagnóstico , Infertilidad/terapia , Tasa de Natalidad , Italia , Reproducción
4.
Proc Biol Sci ; 290(2009): 20231327, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876198

RESUMEN

Cell death is physiologically induced by specific mediators. However, our power to trigger the process in selected cells is quite limited. The protandric shrimp Hippolyte inermis offers a possible answer. Here, we analyse a de novo transcriptome of shrimp post-larvae fed on diatoms. The sex ratio of diatom-fed shrimps versus shrimps fed on control diets was dramatically altered, demonstrating the disruption of the androgenic gland, and their transcriptome revealed key modifications in gene expression. A wide transcriptomic analysis, validated by real-time qPCR, revealed that ferroptosis represents the primary factor to re-shape the body of this invertebrate, followed by further apoptotic events, and our findings open biotechnological perspectives for controlling the destiny of selected tissues. Ferroptosis was detected here for the first time in a crustacean. In addition, this is the first demonstration of a noticeable effect prompted by an ingested food, deeply impacting the gene networks of a young metazoan, definitely determining its future physiology and sexual differentiation.


Asunto(s)
Diatomeas , Ferroptosis , Animales , Ácidos Grasos , Apoptosis , Perfilación de la Expresión Génica , Crustáceos
5.
Biotechnol Adv ; 68: 108235, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567398

RESUMEN

Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.


Asunto(s)
Alcaloides , Toxinas Bacterianas , Cianobacterias , Animales , Toxinas de Cianobacterias , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microcistinas/toxicidad , Microcistinas/química , Microcistinas/metabolismo , Cianobacterias/metabolismo , Alcaloides/metabolismo , Mamíferos
6.
Environ Pollut ; 334: 122129, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429489

RESUMEN

Plastic pollution is a remarkable environmental issue. In fact, plastic is widespread in the lifetime and serious environmental problems are caused by the improper management of plastic end of life, being plastic litter detected in any environment. Efforts are put to implement the development of sustainable and circular materials. In this scenario, biodegradable polymers, BPs, are promising materials if correctly applied and managed at the end of life to minimize environmental problems. However, a lack of data on BPs fate and toxicity on marine organisms, limits their applicability. In this research, the impact of microplastics obtained from BPs, BMPs, were analyzed on Paracentrotus lividus. Microplastics were produced from five biodegradable polyesters at laboratory scale by milling the pristine polymers, under cryogenic conditions. Morphological analysis of P. lividus embryos exposed to polycaprolactone (PCL), polyhydroxy butyrate (PHB) and polylactic acid (PLA) showed their delay and malformations, which at molecular level are due to variation in expression levels of eighty-seven genes involved in various cellular processes, such as skeletogenesis, differentiation and development, stress, and detoxification response. Exposure to poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) microplastics showed no detectable effects on P. lividus embryos. These findings contribute with important data on the effect of BPs on the physiology of marine invertebrates.


Asunto(s)
Paracentrotus , Plásticos , Animales , Plásticos/toxicidad , Microplásticos , Paracentrotus/genética , Embrión no Mamífero , Perfilación de la Expresión Génica
7.
Front Physiol ; 14: 1161852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288438

RESUMEN

A considerable amount of coastal contamination is caused by wastes deriving from household and the degradation and the metabolism of plants and animals, even if our attention is commonly focused on industrial pollutants and contaminants. Waste pollutants are mainly represented by highly diluted soluble compounds and particles deriving from dead organisms. This complex combination, consisting of suspended particles and dissolved nutrients, has a significant impact on coastal planktonic and benthic organisms, also playing an active role in the global cycles of carbon. In addition, production practices are nowadays shifting towards recirculated aquaculture systems (RAS) and the genic responses of target organisms to the pollution deriving from animal metabolism are still scarcely addressed by scientific investigations. The reservoir of organic matter dissolved in the seawater is by far the least understood if compared to that on land, cause only a few compounds have been identified and their impacts on animals and plants are poorly understood. The tendency of these compounds to concentrate at interfaces facilitates the absorption of dissolved organic compound (DOC) onto suspended particles. Some DOC components are chemically combined with dissolved metals and form complexes, affecting the chemical properties of the seawater and the life of the coastal biota. In this research, we compared the reproductive performances of the common sea urchin Paracentrotus lividus cultured in open-cycle tanks to those cultured in a recirculating aquaculture system (RAS), where pollution progressively increased during the experiment due to animal escretions. Sea urchins were cultured for 7 months under these two conditions and their gametes were collected. Embryos resulting by in vitro fertilization were analyzed by Real Time qPCR to identify possible effects of pollution-induced stress. The fertility of sea urchins was evaluated, as well as the gonadosomatic indices and the histological features of gonads. Our results indicate that pollution due to excess of nutrients, event at sub-lethal concentrations, may hardly impact the reproductive potential of this key species and that chronic effects of stress are revealed by the analyses of survival rates and gene expression.

8.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376319

RESUMEN

Plastic pollution is a distinctive element of the globalized world. In fact, since the 1970s the expansion and use of plastics, particularly in the consumer and commercial sectors, has given this material a permanent place in our lives. The increasing use of plastic products and the wrong management of end-of-life plastic products have contributed to increasing environmental pollution, with negative impacts on our ecosystems and the ecological functions of natural habitats. Nowadays, plastic pollution is pervasive in all environmental compartments. As aquatic environments are the dumping points for poorly managed plastics, biofouling and biodegradation have been proposed as promising approaches for plastic bioremediation. Known for the high stability of plastics in the marine environment, this represents a very important issue to preserve marine biodiversity. In this review, we have summarized the main cases reported in the literature on the degradation of plastics by bacteria, fungi, and microalgae and the degradation mechanisms involved, to highlight the potential of bioremediation approaches to reduce macro and microplastic pollution.

9.
Sci Total Environ ; 885: 163875, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37149172

RESUMEN

This study provides a pilot investigation of the relationship between microplastic ingestion and the trophic ecology of three pelagic fish species (Engraulis encrasicolus, Scomber scombrus, and Trachurus trachurus) from Anzio coast, Tyrrhenian Sea (Western Mediterranean). Stable isotope analysis has been performed to determine the trophic position and the isotopic niche of the three species. Then, data on the occurrence, abundance, and diversity of ingested microplastics have been analyzed considering the observed foraging patterns. The detected differences in the estimated trophic position (E. encrasicolus = 3.08 ± 0.18; S. scombrus = 3.57 ± 0.21; T. trachurus = 4.07 ± 0.21), together with the absence of overlap in the isotopic niches confirm that the three examined species cover different ecological roles within the coastal-pelagic food web. Results from the analysis of ingested microplastics show that the trophic position has no remarkable effects on the incidence of microplastic ingestion, with no significant differences detected in terms of both frequency of occurrence and number of ingested microplastics per individual. However, differences among species emerge when considering the diversity of ingested microplastic types in terms of shape, size, color, and polymer composition. Species at higher trophic levels have shown to ingest a greater diversity of microplastics, including a significant increase in the size of the ingested particles (median surface area: 0.011 mm2 in E. encrasicolus; 0.021 mm2 in S. scombrus; 0.036 mm2 in T. trachurus). The ingestion of larger microplastics might be due to the larger gape sizes but also to active selection mechanisms, likely stimulated by the similarity of these particles to natural or potential prey of both S. scombrus and T. trachurus. Overall, this study suggests that microplastic ingestion can be affected by the different trophic position of fish species, providing new insights about the impact of microplastic contamination on the pelagic community.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos/análisis , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Peces , Isótopos/análisis , Mar Mediterráneo
10.
Biology (Basel) ; 12(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37237522

RESUMEN

In Antarctica, prey availability for the mesopredator Adélie penguin, Pygoscelis adeliae, depends on sea-ice dynamics. By affecting cycles of sea-ice formation and melt, climate change could thus affect penguin diet and recruitment. In the light of climate change, this raises concerns about the fate of this dominant endemic species, which plays a key role in the Antarctic food web. However, few quantitative studies measuring the effects of sea-ice persistence on the diet of penguin chicks have yet been conducted. The purpose of this study was to fill this gap by comparing penguin diets across four penguin colonies in the Ross Sea and evaluating latitudinal and interannual variation linked to different sea-ice persistence. Diet was evaluated by analysing the δ13C and δ15N values of penguin guano, and sea-ice persistence by means of satellite images. Isotopic values indicate that penguins consumed more krill in colonies with longer sea-ice persistence. In these colonies, the δ13C values of chicks were lower and closer to the pelagic chain than those of adults, suggesting that the latter apparently catch prey inshore for self-feeding and offshore for their chicks. The results indicate that sea-ice persistence is among the principal factors that influence the spatiotemporal variability of the penguins' diet.

11.
Microorganisms ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985336

RESUMEN

In recent decades, various species of Mediterranean sea urchins, including Paracentrotus lividus, have been subject to widespread seasonal episodes of mass mortality whose causative agents are still unclear. In particular, P. lividus is subject to late winter events of mortality, due to a disease manifested by a massive loss of spines and the presence of greenish amorphous material on the tests (i.e., the sea urchin skeleton consisting of spongeous calcite). Documented mortality events show a seasonal epidemic diffusion and might produce economic losses also in aquaculture facilities, besides the environmental constraints to its diffusion. We collected individuals showing conspicuous lesions on the body surface and reared them in recirculated aquaria. Samples of external mucous were collected along with coelomic liquids and cultured to isolate bacterial and fungal strains, further submitted to molecular identification through the amplification of prokaryotic 16S rDNA. In addition, pools of infected sea urchins were reared in recirculated tanks after short baths in a formulated therapeutic compound and their survival rates were compared to non-treated individuals for variable periods. Here, we aimed at a redescription of the etiopathogenetic nature of the parasites and tested the efficacy of a possible treatment, to be proposed for aquaculture purposes.

12.
Nutrients ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678334

RESUMEN

The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.


Asunto(s)
Chlorophyta , Diatomeas , Microalgas , Phaeophyceae , Humanos , Suplementos Dietéticos
13.
Environ Sci Pollut Res Int ; 30(1): 298-309, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35902515

RESUMEN

Microplastic pollution is one of the greatest environmental concerns for contemporary times and the future. In the last years, the number of publications about microplastic contamination has increased rapidly and the list is daily updated. However, the lack of standard analytical approaches might generate data inconsistencies, reducing the comparability among different studies. The present study investigates the potential of two image processing tools (namely the shapeR package for R and ImageJ 1.52v) in providing an accurate characterization of the shape of microplastics using a restricted set of shape descriptors. To ascertain that the selected tools can measure small shape differences, we perform an experiment to verify the detection of pre-post variations in the shape of different microplastic types (i.e., nylon [NY], polyethylene [PE], polyethylene terephthalate [PET], polypropylene [PP], polystyrene [PS], and polyvinylchloride [PVC]) treated with mildly corrosive chemicals (i.e., 10% KOH at 60 °C, 30% H2O2 at 50 °C, and 15% H2O2 + 5% HNO3 at 40 °C; incubation time ≈ 12 h). Analysis of surface area variations returns results about the vulnerability of plastic polymers to digestive solutions that are aligned with most of the acquired knowledge. The largest decrease in surface area occurs for KOH-treated PET particles, while NY results in the most susceptible polymer to the 30% H2O2 treatment, followed by PVC and PS. PE and PP are the most resistant polymers to all the used treatments. The adopted methods to characterize microplastics seem reliable tools for detecting small differences in the shape and size of these particles. Then, the analytic perspectives that can be developed using such widely accessible and low-cost equipment are discussed.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Peróxido de Hidrógeno/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Polipropilenos/análisis , Poliestirenos/análisis , Polímeros , Polietileno/análisis , Nylons , Tereftalatos Polietilenos
14.
Front Microbiol ; 14: 1295459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274771

RESUMEN

The oceans cover over 70% of our planet, hosting a biodiversity of tremendous wealth. Sponges are one of the major ecosystem engineers on the seafloor, providing a habitat for a wide variety of species to be considered a good source of bioactive compounds. In this study, a metataxonomic approach was employed to describe the bacterial communities of the sponges collected from Faro Lake (Sicily) and Porto Paone (Gulf of Naples). Morphological analysis and amplification of the conserved molecular markers, including 18S and 28S (RNA ribosomal genes), CO1 (mitochondrial cytochrome oxidase subunit 1), and ITS (internal transcribed spacer), allowed the identification of four sponges. Metataxonomic analysis of sponges revealed a large number of amplicon sequence variants (ASVs) belonging to the phyla Proteobacteria, Cloroflexi, Dadabacteria, and Poribacteria. In particular, Myxilla (Myxilla) rosacea and Clathria (Clathria) toxivaria displayed several classes such as Alphaproteobacteria, Dehalococcoidia, Gammaproteobacteria, Cyanobacteria, and Bacteroidia. On the other hand, the sponges Ircinia oros and Cacospongia mollior hosted bacteria belonging to the classes Dadabacteriia, Anaerolineae, Acidimicrobiia, Nitrospiria, and Poribacteria. Moreover, for the first time, the presence of Rhizobiaceae bacteria was revealed in the sponge M. (Myxilla) rosacea, which was mainly associated with soil and plants and involved in biological nitrogen fixation.

15.
Biology (Basel) ; 11(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36552314

RESUMEN

The gall midge Lasioptera donacis, whose larval stage interferes with the reed's leaf development, is a potential candidate agent for the biological control of Arundo donax. Reed infestation is always associated with the presence of a saprophytic fungus, Arthrinium arundinis, which is believed to provide food for the larvae. Larvae also interact with a parasitic nematode, Tripius gyraloura, which can be considered its natural enemy. To deepen our knowledge of the plant-fungus-insect trophic interactions and to understand the effects of the nematode on midge larval feeding behaviour, we applied stable isotope analysis, one of the most effective methods for investigating animal feeding preferences in various contexts. The results showed that on average the fungus accounted for 65% of the diet of the midge larvae, which however consumed the reed and the fungus in variable proportions depending on reed quality (expressed as the C:N ratio). No differences in feeding behaviour were observed between parasitised and non-parasitised midge larvae, indicating that nematodes have no effect in this regard. Due to its trophic habits, L. donacis could be an effective control agent of A. donax and these results need to be considered when implementing biological control measures.

16.
Mar Drugs ; 20(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36547890

RESUMEN

Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.


Asunto(s)
Algas Marinas , Ulva , Agua de Mar/química , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos
17.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361581

RESUMEN

The increase in the demand for Paracentrotus lividus roe, a food delicacy, causes increased pressure on its wild stocks. In this scenario, aquaculture facilities will mitigate the effects of anthropogenic pressures on the wild stocks of P. lividus. Consequently, experimental studies should be conducted to enhance techniques to improve efficient aquaculture practices for these animals. Here, we for the first time performed molecular investigations on cultured sea urchins. We aimed at understanding if maternal influences may significantly impact the life of future offspring, and how the culture conditions may impact the development and growth of cultured specimens. Our findings demonstrate that the outcomes of in vitro fertilization of P. lividus are influenced by maternal influences, but these effects are largely determined by culture conditions. In fact, twenty-three genes involved in the response to stress and skeletogenesis, whose expressions were measured by Real Time qPCR, were differently expressed in sea urchins cultured in two experimental conditions, and the results were largely modified in offspring deriving from two groups of females. The findings herein reported will be critical to develop protocols for the larval culture of the most common sea urchin, both for research and industrial production purposes for mass production.


Asunto(s)
Paracentrotus , Animales , Femenino , Paracentrotus/genética , Tasa de Supervivencia , Reproducción/genética , Larva , Expresión Génica
18.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142592

RESUMEN

Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new "omic" technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.


Asunto(s)
Neoplasias , Poríferos , Animales , Organismos Acuáticos/química , Biotecnología , Humanos , Metaboloma , Neoplasias/tratamiento farmacológico , Extractos Vegetales , Poríferos/química
19.
Mar Pollut Bull ; 184: 114133, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36150223

RESUMEN

The development of monitoring programs based on bioindicators is crucial for assessing the impact of microplastic ingestion on marine organisms. This study presents results from an Italian pilot action aimed at investigating the suitability of a monitoring strategy based on a multispecies approach. The benthic-feeder Mullus barbatus, the demersal species Merluccius merluccius, and the pelagic-feeder species of the genus Scomber were used to assess the environmental contamination by microplastics in three different marine areas, namely Ancona (Adriatic Sea), Anzio (Tyrrhenian Sea), and Oristano (Western Sardinia). Microplastic ingestion frequencies were higher in samples from Anzio (26.7 %) and Ancona (25.0 %) than Oristano (14.4 %), suggesting a relationship between microplastic bioavailability and the proximity to urban settlements and river flows. Furthermore, microplastic ingestion was affected by the feeding habits of the examined species. The detected differences reinforce the hypothesis that a multispecies approach is needed to evaluate microplastic ingestion by marine animals.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Biomarcadores Ambientales , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Peces , Ingestión de Alimentos
20.
Oncol Lett ; 24(2): 286, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35814825

RESUMEN

The serious side effects caused by chemotherapeutics and the development of cancer chemoresistance represent the most significant limitations in the treatment of cancer. Some alternative approaches have been developed in recent years, which are based on natural compounds, and have allowed important advances in cancer therapeutics. During the last 50 years, sponges have been considered a promising source of natural products from the marine environment, representing ~30% of all marine natural products. Among sponges, the Mediterranean species Geodia cydonium represents a potential source of these type of products with considerable biotechnological interest as pharmaceutical agents. The present study demonstrated the antiproliferative effect of an organic G. cydonium extract (GEOCYDO) against three human mesothelioma cell lines, MSTO-211H (MSTO), NCI-H2452 (NCI) and Ist-Mes2 (Mes2), which differ in their sensitivity (MSTO and NCI) and resistance (Mes2) to standard combined treatment with cisplatin and piroxicam. To this aim, the activity of the extract was evaluated by analyzing its effects on cell viability, cancer properties and cell cycle progression by means of colony formation assay, cell cycle analysis and protein expression analysis. The results revealed, in mesothelioma, this extract was able to reduce self-renewal, cell migration and it could induce cell cycle arrest in G0/G1 stage, thus blocking cell proliferation. In conclusion, to the best of our knowledge, the present results indicated for the first time that GEOCYDO can contain active compounds able to affect cell proliferation in mesothelioma, suggesting that it could be considered as a potential novel drug source for cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...