Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392380

RESUMEN

This paper presents a continuation of the Chambadal model optimization of the irreversible Carnot engine. We retrieved the results presented in the Special Issue "Carnot Cycle and Heat Engine Fundamentals and Applications II" and enriched them with new contributions that allowed comparing two points of view: (1) the now classical one, centered on entropy production in the four processes of the cycle, which introduces the action of entropy production, with several sequential optimizations; (2) the new one that is relative to an energy degradation approach. The same démarche of sequential optimization was used, but the results were slightly different. We estimate that the second approach is more representative of physics by emphasizing the energy conservation and the existence on an upper and a lower bound in the mechanical energy and power output of the engine.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36554480

RESUMEN

Poor air quality inside museums can have a double effect; on the one hand, influencing the integrity of the exhibits and on the other hand, endangering the health of employees and visitors. Both components can be very sensitive to the influence of the internal microclimate, therefore careful monitoring of the physical parameters and pollutants is required in order to maintain them within strict limits and thus to reduce the hazards that can be induced. The current study considers the determination and analysis of 15 indicators of the internal microclimate in an Art Nouveau museum built at the beginning of the 20th century in the Municipality of Oradea, Romania. The monitoring spanned a period of seven months, between September 2021 and March 2022, targeting three rooms of the museum with different characteristics and containing exhibits with a high degree of fragility. The results show that, although there are numerous indicators that have exceeded the thresholds induced by international standards, the possible negative impact on the exhibits and/or on human health remains moderate. This is due to the fact that, most of the time, exceeding the permitted limits are small or only sporadic, the values quickly returning to the permitted limits. Thus, only 22 of the 212 days of monitoring recorded marginal conditions regarding the quality of the indoor air, the rest having acceptable and good conditions. To improve the indoor conditions, a more careful management is needed, especially regarding the values of temperature, humidity, particulate matters, natural and artificial light, volatile organic compounds (VOC) and formaldehyde (HCHO), which during the measurements recorded high values that fluctuated in a wide spectrum. The obtained results can represent the basis for the development and implementation of long-term strategies for stabilizing the microclimatic conditions in the museum in order to preserve the exhibits preventively and to ensure a clean and safe environment for people.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Microclima , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente
3.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35746228

RESUMEN

The old fibers that make up heritage textiles displayed in museums are degraded by the aging process, environmental conditions (microclimates, particulate matter, pollutants, sunlight) and the action of microorganisms. In order to counteract these processes and keep the textile exhibits in good condition for as long as possible, both reactive and preventive interventions on them are necessary. Based on these ideas, the present study aims to test a natural and non-invasive method of cleaning historic textiles, which includes the use of a natural substance with a known antifungal effect (being traditionally used in various rural communities)-lye. The design of the study was aimed at examining a traditional women's shirt that is aged between 80-100 years, using artificial intelligence techniques for Scanning Electron Microscopy (SEM) imagery analysis and X-ray powder diffraction technique in order to achieve a complex and accurate investigation and monitoring of the object's realities. The determinations were performed both before and after washing the material with lye. SEM microscopy investigations of the ecologically washed textile specimens showed that the number of microorganism colonies, as well as the amount of dust, decreased. It was also observed that the surface cellulose fibers lost their integrity, eventually being loosened on cellulose fibers of cotton threads. This could better visualize the presence of microfibrils that connect the cellulose fibers in cotton textiles. The results obtained could be of real value both for the restorers, the textile collections of the different museums, and for the researchers in the field of cultural heritage. By applying such a methodology, cotton tests can be effectively cleaned without compromising the integrity of the material.


Asunto(s)
Investigación Interdisciplinaria , Lejía , Anciano de 80 o más Años , Inteligencia Artificial , Celulosa , Femenino , Humanos , Textiles
4.
Entropy (Basel) ; 24(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35052110

RESUMEN

This paper presents a new step in the optimization of the Chambadal model of the Carnot engine. It allows a sequential optimization of a model with internal irreversibilities. The optimization is performed successively with respect to various objectives (e.g., energy, efficiency, or power when introducing the duration of the cycle). New complementary results are reported, generalizing those recently published in the literature. In addition, the new concept of entropy production action is proposed. This concept induces new optimums concerning energy and power in the presence of internal irreversibilities inversely proportional to the cycle or transformation durations. This promising approach is related to applications but also to fundamental aspects.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34574831

RESUMEN

Monitoring the indoor microclimate in old buildings of cultural heritage and significance is a practice of great importance because of the importance of their identity for local communities and national consciousness. Most aged heritage buildings, especially those made of wood, develop an indoor microclimate conducive to the development of microorganisms. This study aims to analyze one wooden church dating back to the 1710s in Romania from the microclimatic perspective, i.e., temperature and relative humidity and the fungal load of the air and surfaces. One further aim was to determine if the internal microclimate of the monument is favorable for the health of parishioners and visitors, as well as for the integrity of the church itself. The research methodology involved monitoring of the microclimate for a period of nine weeks (November 2020-January 2021) and evaluating the fungal load in indoor air as well as on the surfaces. The results show a very high contamination of air and surfaces (>2000 CFU/m3). In terms of fungal contamination, Aspergillus spp. (two different species), Alternaria spp., Cladosporium spp., Mucor spp., Penicillium spp. (two different species) and Trichopyton spp. were the genera of fungi identified in the indoor wooden church air and Aspergillus spp., Cladosporium spp., Penicillium spp. (two different species) and Botrytis spp. on the surfaces (church walls and iconostasis). The results obtained reveal that the internal microclimate not only imposes a potential risk factor for the parishioners and visitors, but also for the preservation of the wooden church as a historical monument, which is facing a crisis of biodeterioration of its artwork.


Asunto(s)
Contaminación del Aire Interior , Microbiología del Aire , Contaminación del Aire Interior/análisis , Alternaria , Monitoreo del Ambiente , Hongos , Rumanía
6.
Entropy (Basel) ; 23(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922290

RESUMEN

An irreversible Carnot cycle engine operating as a closed system is modeled using the Direct Method and the First Law of Thermodynamics for processes with Finite Speed. Several models considering the effect on the engine performance of external and internal irreversibilities expressed as a function of the piston speed are presented. External irreversibilities are due to heat transfer at temperature gradient between the cycle and heat reservoirs, while internal ones are represented by pressure losses due to the finite speed of the piston and friction. Moreover, a method for optimizing the temperature of the cycle fluid with respect to the temperature of source and sink and the piston speed is provided. The optimization results predict distinct maximums for the thermal efficiency and power output, as well as different behavior of the entropy generation per cycle and per time. The results obtained in this optimization, which is based on piston speed, and the Curzon-Ahlborn optimization, which is based on time duration, are compared and are found to differ significantly. Correction have been proposed in order to include internal irreversibility in the externally irreversible Carnot cycle from Curzon-Ahlborn optimization, which would be equivalent to a unification attempt of the two optimization analyses.

7.
Entropy (Basel) ; 22(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33286682

RESUMEN

The need for cooling is more and more important in current applications, as environmental constraints become more and more restrictive. Therefore, the optimization of reverse cycle machines is currently required. This optimization could be split in two parts, namely, (1) the design optimization, leading to an optimal dimensioning to fulfill the specific demand (static or nominal steady state optimization); and (2) the dynamic optimization, where the demand fluctuates, and the system must be continuously adapted. Thus, the variability of the system load (with or without storage) implies its careful control-command. The topic of this paper is concerned with part (1) and proposes a novel and more complete modeling of an irreversible Carnot refrigerator that involves the coupling between sink (source) and machine through a heat transfer constraint. Moreover, it induces the choice of a reference heat transfer entropy, which is the heat transfer entropy at the source of a Carnot irreversible refrigerator. The thermodynamic optimization of the refrigerator provides new results regarding the optimal allocation of heat transfer conductances and minimum energy consumption with associated coefficient of performance (COP) when various forms of entropy production owing to internal irreversibility are considered. The reported results and their consequences represent a new fundamental step forward regarding the performance upper bound of Carnot irreversible refrigerator.

8.
Entropy (Basel) ; 22(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33287045

RESUMEN

The paper presents experimental tests and theoretical studies of a Stirling engine cycle applied to a ß-type machine. The finite physical dimension thermodynamics (FPDT) method and 0D modeling by the imperfectly regenerated Schmidt model are used to develop analytical models for the Stirling engine cycle. The purpose of this study is to show that two simple models that take into account only the irreversibility due to temperature difference in the heat exchangers and imperfect regeneration are able to indicate engine behavior. The share of energy loss for each is determined using these two models as well as the experimental results of a particular engine. The energies exchanged by the working gas are expressed according to the practical parameters, which are necessary for the engineer during the entire project, namely the maximum pressure, the maximum volume, the compression ratio, the temperature of the heat sources, etc. The numerical model allows for evaluation of the energy processes according to the angle of the crankshaft (kinematic-thermodynamic coupling). The theoretical results are compared with the experimental research. The effect of the engine rotation speed on the power and efficiency of the actual operating machine is highlighted. The two methods show a similar variation in performance, although heat loss due to imperfect regeneration is evaluated differently.

9.
Entropy (Basel) ; 20(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33266677

RESUMEN

Several optimization models of irreversible reverse cycle machines have been developed based on different optimization criteria in the literature, most of them using linear heat transfer laws at the source and sink. This raises the issue how close to actual operation conditions they are, since the heat transfer law on the phase-change processes is dependent on ΔT3. This paper addresses this issue by proposing a general model for study and optimization of thermal machines with two heat reservoirs applied to a Carnot-like refrigerator, with non-linear heat transfer laws and internal and external irreversibility. The optimization was performed using First and Second Law of Thermodynamics and the Lagrange multipliers method. Thus, several constraints were imposed to the system, also different objective functions were considered, allowing finding the optimum operating conditions, as well as the limited variation ranges of the system parameters. Results show that the nature of the heat transfer laws affects the optimum values of system parameters for obtaining maximum performances and also their magnitude. Sensitivity studies with respect to system several parameters are presented. The results contribute to the understanding of the system limits in operation under different constraints and allow choosing the most convenient variables in given circumstances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA