Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1363004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660622

RESUMEN

The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.

2.
Cells ; 11(13)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35805184

RESUMEN

Skin is constantly exposed to injuries that are repaired with different outcomes, either regeneration or scarring. Scars result from fibrotic processes modulated by cellular physical forces transmitted by integrins. Fibronectin (FN) is a major component in the provisional matrix assembled to repair skin wounds. FN enables cell adhesion binding of α5ß1/αIIbß3 and αv-class integrins to an RGD-motif. An additional linkage for α5/αIIb is the synergy site located in close proximity to the RGD motif. The mutation to impair the FN synergy region (Fn1syn/syn) demonstrated that its absence permits complete development. However, only with the additional engagement to the FN synergy site do cells efficiently resist physical forces. To test how the synergy site-mediated adhesion affects the course of wound healing fibrosis, we used a mouse model of skin injury and in-vitro migration studies with keratinocytes and fibroblasts on FNsyn. The loss of FN synergy site led to normal re-epithelialization caused by two opposing migratory defects of activated keratinocytes and, in the dermis, induced reduced fibrotic responses, with lower contents of myofibroblasts and FN deposition and diminished TGF-ß1-mediated cell signalling. We demonstrate that weakened α5ß1-mediated traction forces on FNsyn cause reduced TGF-ß1 release from its latent complex.


Asunto(s)
Fibronectinas , Piel , Cicatrización de Heridas , Animales , Adhesión Celular , Células Cultivadas , Fibroblastos/citología , Fibronectinas/genética , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Queratinocitos/citología , Ratones , Oligopéptidos/metabolismo , Piel/lesiones , Factor de Crecimiento Transformador beta1/metabolismo
3.
Curr Top Dev Biol ; 149: 203-261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35606057

RESUMEN

Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.


Asunto(s)
Células Madre Hematopoyéticas , Integrinas , Médula Ósea , Femenino , Hematopoyesis , Humanos , Integrinas/metabolismo , Mesonefro , Embarazo
4.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34447991

RESUMEN

Translation of mRNAs that encode peptide sequences with consecutive prolines (polyproline) requires the conserved and essential elongation factor eIF5A to facilitate the formation of peptide bonds. It has been shown that, upon eIF5A depletion, yeast ribosomes stall in polyproline motifs, but also in tripeptide sequences that combine proline with glycine and charged amino acids. Mammalian collagens are enriched in putative eIF5A-dependent Pro-Gly-containing tripeptides. Here, we show that depletion of active eIF5A in mouse fibroblasts reduced collagen type I α1 chain (Col1a1) content, which concentrated around the nuclei. Moreover, it provoked the upregulation of endoplasmic reticulum (ER) stress markers, suggesting retention of partially synthesized collagen 1 (Col1) in the ER. We confirmed that eIF5A is needed for heterologous collagen synthesis in yeast and, using a double luciferase reporter system, showed that eIF5A depletion interrupts translation at Pro-Gly collagenic motifs. A dramatically lower level of Col1a1 protein was also observed in functional eIF5A-depleted human hepatic stellate cells treated with the profibrotic cytokine TGF-ß1. In sum, our results show that collagen expression requires eIF5A and imply its potential as a target for regulating collagen production in fibrotic diseases.


Asunto(s)
Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Animales , Colágeno/genética , Ratones , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
J Cell Biol ; 219(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33141174

RESUMEN

Fibronectin (FN) is an essential glycoprotein of the extracellular matrix; binds integrins, syndecans, collagens, and growth factors; and is assembled by cells into complex fibrillar networks. The RGD motif in FN facilitates cell binding- and fibrillogenesis through binding to α5ß1 and αv-class integrins. However, whether RGD is the sole binding site for αv-class integrins is unclear. Most notably, substituting aspartate with glutamate (RGE) was shown to eliminate integrin binding in vitro, while mouse genetics revealed that FNRGE preserves αv-class integrin binding and fibrillogenesis. To address this conflict, we employed single-cell force spectroscopy, engineered cells, and RGD motif-deficient mice (Fn1ΔRGD/ΔRGD) to search for additional αv-class integrin-binding sites. Our results demonstrate that α5ß1 and αv-class integrins solely recognize the FN-RGD motif and that αv-class, but not α5ß1, integrins retain FN-RGE binding. Furthermore, Fn1ΔRGD/ΔRGD tissues and cells assemble abnormal and dysfunctional FNΔRGD fibrils in a syndecan-dependent manner. Our data highlight the central role of FN-RGD and the functionality of FN-RGE for αv-class integrins.


Asunto(s)
Mutación , Oligopéptidos/metabolismo , Animales , Ratones , Ratones Mutantes , Oligopéptidos/genética , Receptores de Vitronectina/genética
7.
Biomaterials ; 252: 120090, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32413593

RESUMEN

Basement membranes (BMs) are specialised extracellular matrices that provide structural support to tissues as well as influence cell behaviour and signalling. Mutations in COL4A1/COL4A2, a major BM component, cause a familial form of eye, kidney and cerebrovascular disease, including stroke, while common variants in these genes are a risk factor for intracerebral haemorrhage in the general population. These phenotypes are associated with matrix defects, due to mutant protein incorporation in the BM and/or its absence by endoplasmic reticulum (ER) retention. However, the effects of these mutations on matrix stiffness, the contribution of the matrix to the disease mechanism(s) and its effects on the biology of cells harbouring a collagen IV mutation remain poorly understood. To shed light on this, we employed synthetic polymer biointerfaces, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA) coated with ECM proteins laminin or fibronectin (FN), to generate controlled microenvironments and investigate their effects on the cellular phenotype of primary fibroblasts harbouring a COL4A2+/G702D mutation. FN nanonetworks assembled on PEA induced increased deposition and assembly of collagen IV in COL4A2+/G702D cells, which was associated with reduced ER size and enhanced levels of protein chaperones such as BIP, suggesting increased protein folding capacity of the cell. FN nanonetworks on PEA also partially rescued the reduced stiffness of the deposited matrix and cells, and enhanced cell adhesion through increased actin-myosin contractility, effectively rescuing some of the cellular phenotypes associated with COL4A1/4A2 mutations. The mechanism by which FN nanonetworks enhanced the cell phenotype involved integrin ß1-mediated signalling. Collectively, these results suggest that biomaterials and enhanced integrin signalling via assembled FN are able to shape the matrix and cellular phenotype of the COL4A2+/G702D mutation in patient-derived cells.


Asunto(s)
Colágeno Tipo IV , Fibronectinas , Membrana Basal , Colágeno Tipo IV/genética , Matriz Extracelular , Fibroblastos , Fibronectinas/genética , Humanos , Mutación
8.
PLoS One ; 15(3): e0230380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32163511

RESUMEN

Epidermal morphogenesis and hair follicle (HF) development depend on the ability of keratinocytes to adhere to the basement membrane (BM) and migrate along the extracellular matrix. Integrins are cell-matrix receptors that control keratinocyte adhesion and migration, and are recognized as major regulators of epidermal homeostasis. How integrins regulate the behavior of keratinocytes during epidermal morphogenesis remains insufficiently understood. Here, we show that α-parvin (α-pv), a focal adhesion protein that couples integrins to actin cytoskeleton, is indispensable for epidermal morphogenesis and HF development. Inactivation of the murine α-pv gene in basal keratinocytes results in keratinocyte-BM detachment, epidermal thickening, ectopic keratinocyte proliferation and altered actin cytoskeleton polarization. In vitro, α-pv-null keratinocytes display reduced adhesion to BM matrix components, aberrant spreading and stress fibers formation, and impaired directed migration. Together, our data demonstrate that α-pv controls epidermal homeostasis by facilitating integrin-mediated adhesion and actin cytoskeleton organization in keratinocytes.


Asunto(s)
Membrana Basal/metabolismo , Epidermis/crecimiento & desarrollo , Folículo Piloso/metabolismo , Queratinocitos/metabolismo , Proteínas de Microfilamentos/fisiología , Morfogénesis/fisiología , Actinas/metabolismo , Animales , Membrana Basal/citología , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Queratinocitos/citología , Ratones , Ratones Transgénicos
9.
J Clin Invest ; 130(4): 2024-2040, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945017

RESUMEN

After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localization of MTs to growth cone filopodia was facilitated by direct MT binding and interaction with formins. In vivo, Pfn1 ablation limited regeneration of growth-competent axons after sciatic nerve and spinal cord injury. Adeno-associated viral (AAV) delivery of constitutively active Pfn1 to rodents promoted axonal regeneration, neuromuscular junction maturation, and functional recovery of injured sciatic nerves, and increased the ability of regenerating axons to penetrate the inhibitory spinal cord glial scar. Thus, we identify Pfn1 as an important regulator of axonal regeneration and suggest that AAV-mediated delivery of constitutively active Pfn1, together with the identification of modulators of Pfn1 activity, should be considered to treat the injured nervous system.


Asunto(s)
Citoesqueleto , Terapia Genética , Conos de Crecimiento/metabolismo , Regeneración Nerviosa , Nervio Ciático/fisiología , Traumatismos de la Médula Espinal , Animales , Citoesqueleto/genética , Citoesqueleto/metabolismo , Dependovirus , Ratones , Ratones Noqueados , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Profilinas/biosíntesis , Profilinas/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Transducción Genética
10.
JBMR Plus ; 3(6): e10130, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31346562

RESUMEN

Profilin 1 (Pfn1), a regulator of actin polymerization, controls cell movement in a context-dependent manner. Pfn1 supports the locomotion of most adherent cells by assisting actin-filament elongation, as has been shown in skeletal progenitor cells in our previous study. However, because Pfn1 has also been known to inhibit migration of certain cells, including T cells, by suppressing branched-end elongation of actin filaments, we hypothesized that its roles in osteoclasts may be different from that of osteoblasts. By investigating the osteoclasts in culture, we first verified that Pfn1-knockdown (KD) enhances bone resorption in preosteoclastic RAW264.7 cells, despite having a comparable number and size of osteoclasts. Pfn1-KD in bone marrow cells showed similar results. Mechanistically, Pfn1-KD osteoclasts appeared more mobile than in controls. In vivo, the osteoclast-specific conditional Pfn1-deficient mice (Pfn1-cKO) by CathepsinK-Cre driver demonstrated postnatal skeletal phenotype, including dwarfism, craniofacial deformities, and long-bone metaphyseal osteolytic expansion, by 8 weeks of age. Metaphyseal and diaphyseal femurs were drastically expanded with suppressed trabecular bone mass as indicated by µCT analysis. Histologically, TRAP-positive osteoclasts were increased at endosteal metaphysis to diaphysis of Pfn1-cKO mice. The enhanced movement of Pfn1-cKO osteoclasts in culture was associated with a slight increase in cell size and podosome belt length, as well as an increase in bone-resorbing activity. Our study, for the first time, demonstrated that Pfn1 has critical roles in inhibiting osteoclast motility and bone resorption, thereby contributing to essential roles in postnatal skeletal homeostasis. Our study also provides novel insight into understanding skeletal deformities in human disorders.

11.
Nat Cell Biol ; 21(1): 25-31, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602766

RESUMEN

Integrins are the major family of adhesion molecules that mediate cell adhesion to the extracellular matrix. They are essential for embryonic development and influence numerous diseases, including inflammation, cancer cell invasion and metastasis. In this Perspective, we discuss the current understanding of how talin, kindlin and mechanical forces regulate integrin affinity and avidity, and how integrin inactivators function in this framework.


Asunto(s)
Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Talina/metabolismo , Animales , Adhesión Celular , Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos , Estrés Mecánico
12.
Adv Biosyst ; 3(1): e1800220, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32627349

RESUMEN

Boron ion is essential in metabolism and its concentration is regulated by ion-channel NaBC1. NaBC1 mutations cause corneal dystrophies such as Harboyan syndrome. Here a 3D molecular model for NaBC1 is proposed and it is shown that simultaneous stimulation of NaBC1 and vascular endothelial growth factor receptors (VEGFR) promotes angiogenesis in vitro and in vivo with ultralow concentrations of VEGF. Human umbilical vein endothelial cells' (HUVEC) organization into tubular structures is shown to be indicative of vascularization potential. Enhanced cell sprouting is found only in the presence of VEGF and boron, the effect abrogated after blocking NaBC1. It is demonstrated that stimulated NaBC1 promotes angiogenesis via PI3k-independent pathways and that α5 ß1 /αv ß3 integrin binding is not essential to enhanced HUVEC organization. A novel vascularization mechanism that involves crosstalk and colocalization between NaBC1 and VEGFR receptors is described. This has important translational consequences; just by administering boron, taking advantage of endogenous VEGF, in vivo vascularization is shown in a chorioallantoic membrane assay.

13.
PLoS One ; 13(6): e0198559, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870552

RESUMEN

The balance between synthesis and degradation of the cartilage extracellular matrix is severely altered in osteoarthritis, where degradation predominates. One reason for this imbalance is believed to be due to the ligation of the α5ß1 integrin, the classic fibronectin (FN) receptor, with soluble FN fragments instead of insoluble FN fibrils, which induces matrix metalloproteinase (MMP) expression. Our objective was to determine whether the lack of α5ß1-FN binding influences cartilage morphogenesis in vivo and whether non-ligated α5ß1 protects or aggravates the course of osteoarthritis in mice. We engineered mice (Col2a-Cre;Fn1RGE/fl), whose chondrocytes express an α5ß1 binding-deficient FN, by substituting the aspartic acid of the RGD cell-binding motif with a glutamic acid (FN-RGE). At an age of 5 months the knee joints were stressed either by forced exercise (moderate mechanical load) or by partially resecting the meniscus followed by forced exercise (high mechanical load). Sections of femoral articular knees were analysed by Safranin-O staining and by immunofluorescence to determine tissue morphology, extracellular matrix proteins and matrix metalloproteinase expression. The articular cartilage from untrained control and Col2a-Cre;Fn1RGE/fl mice was normal, while the exposure to high mechanical load induced osteoarthritis characterized by proteoglycan and collagen type II loss. In the Col2a-Cre;Fn1RGE/fl articular cartilage osteoarthritis progressed significantly faster than in wild type mice. Mechanistically, we observed increased expression of MMP-13 and MMP-3 metalloproteinases in FN-RGE expressing articular cartilage, which severely affected matrix remodelling. Our results underscore the critical role of FN-α5ß1 adhesion as ECM sensor in circumstances of articular cartilage regeneration.


Asunto(s)
Cartílago Articular/patología , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Osteoartritis/patología , Regeneración/fisiología , Animales , Cartílago Articular/citología , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibronectinas/genética , Humanos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Osteoartritis/etiología , Condicionamiento Físico Animal/efectos adversos , Transducción de Señal
14.
J Cell Physiol ; 233(1): 259-268, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28233307

RESUMEN

Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass.


Asunto(s)
Movimiento Celular , Forma de la Célula , Fémur/metabolismo , Osteocitos/metabolismo , Profilinas/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Densidad Ósea , Remodelación Ósea , Línea Celular , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Regulación de la Expresión Génica , Genotipo , Peróxido de Hidrógeno/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/efectos de los fármacos , Fenotipo , Cultivo Primario de Células , Profilinas/deficiencia , Profilinas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Microtomografía por Rayos X
15.
Nat Mater ; 17(1): 103, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29255228

RESUMEN

This corrects the article DOI: 10.1038/nmat5023.

16.
Nat Mater ; 16(12): 1262-1270, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29115292

RESUMEN

Integrin-mediated mechanosensing of the extracellular environment allows cells to control adhesion and signalling. Whether cells sense and respond to force immediately upon ligand-binding is unknown. Here, we report that during adhesion initiation, fibroblasts respond to mechanical load by strengthening integrin-mediated adhesion to fibronectin (FN) in a biphasic manner. In the first phase, which depends on talin and kindlin as well as on the actin nucleators Arp2/3 and mDia, FN-engaged α5ß1 integrins activate focal adhesion kinase (FAK) and c-Src in less than 0.5 s to steeply strengthen α5ß1- and αV-class integrin-mediated adhesion. When the mechanical load exceeds a certain threshold, fibroblasts decrease adhesion and initiate the second phase, which is characterized by less steep adhesion strengthening. This unique, biphasic cellular adhesion response is mediated by α5ß1 integrins, which form catch bonds with FN and signal to FN-binding integrins to reinforce cell adhesion much before visible adhesion clusters are formed.


Asunto(s)
Fibroblastos/metabolismo , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Mecanotransducción Celular , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Adhesión Celular/genética , Fibroblastos/citología , Fibronectinas/genética , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Integrina alfa5beta1/genética , Ratones , Ratones Noqueados , Talina/genética , Talina/metabolismo , Factores de Tiempo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
17.
Biomaterials ; 126: 61-74, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28279265

RESUMEN

We have engineered polymer-based microenvironments that promote vasculogenesis both in vitro and in vivo through synergistic integrin-growth factor receptor signalling. Poly(ethyl acrylate) (PEA) triggers spontaneous organization of fibronectin (FN) into nanonetworks which provide availability of critical binding domains. Importantly, the growth factor binding (FNIII12-14) and integrin binding (FNIII9-10) regions are simultaneously available on FN fibrils assembled on PEA. This material platform promotes synergistic integrin/VEGF signalling which is highly effective for vascularization events in vitro with low concentrations of VEGF. VEGF specifically binds to FN fibrils on PEA compared to control polymers (poly(methyl acrylate), PMA) where FN remains in a globular conformation and integrin/GF binding domains are not simultaneously available. The vasculogenic response of human endothelial cells seeded on these synergistic interfaces (VEGF bound to FN assembled on PEA) was significantly improved compared to soluble administration of VEGF at higher doses. Early onset of VEGF signalling (PLCγ1 phosphorylation) and both integrin and VEGF signalling (ERK1/2 phosphorylation) were increased only when VEGF was bound to FN nanonetworks on PEA, while soluble VEGF did not influence early signalling. Experiments with mutant FN molecules with impaired integrin binding site (FN-RGE) confirmed the role of the integrin binding site of FN on the vasculogenic response via combined integrin/VEGF signalling. In vivo experiments using 3D scaffolds coated with FN and VEGF implanted in the murine fat pad demonstrated pro-vascularization signalling by enhanced formation of new tissue inside scaffold pores. PEA-driven organization of FN promotes efficient presentation of VEGF to promote vascularization in regenerative medicine applications.


Asunto(s)
Microambiente Celular , Integrinas/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Ingeniería de Tejidos/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibronectinas/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Fosfolipasa C gamma/metabolismo , Fosforilación , Unión Proteica
18.
Elife ; 62017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28092265

RESUMEN

Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5ß1, αIIbß3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1syn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of ß3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensable for the initial contact of α5ß1 with the RGD, but essential to re-enforce the binding of α5ß1/αIIbß3 to FN. Our findings demonstrate a critical role for the FN synergy site when external forces exceed a certain threshold or when αvß3 integrin levels decrease below a critical level.


Asunto(s)
Adhesión Celular , Fibronectinas/metabolismo , Integrinas/metabolismo , Animales , Hemorragia , Ratones , Ratones Noqueados , Trombosis/metabolismo
19.
Cell Adh Migr ; 9(3): 247-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25495756

RESUMEN

Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2'-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration.


Asunto(s)
Movimiento Celular , Cerebelo/citología , Neuronas/citología , Neuronas/metabolismo , Profilinas/metabolismo , Actinas/metabolismo , Animales , Ratones , Ratones Transgénicos , Neurogénesis , Neuroglía/citología
20.
J Cell Biol ; 207(2): 283-97, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25332161

RESUMEN

Integrin-mediated force application induces a conformational change in latent TGF-ß1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-ß1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-ß1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-ß1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-ß1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-ß1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.


Asunto(s)
Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células HEK293 , Humanos , Integrinas/metabolismo , Integrinas/fisiología , Mecanotransducción Celular , Miofibroblastos/citología , Miofibroblastos/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...