Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 206: 497-522, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28944811

RESUMEN

The vacuum-liquid interfaces of a number of ionic-liquid mixtures have been investigated using the combination of reactive-atom scattering with laser-induced fluorescence detection (RAS-LIF), selected surface tension measurements, and molecular dynamics (MD) simulations. The mixtures are based on the widespread 1-alkyl-3-methylimidazolium ([Cnmim]+) cation, including mixed cations which differ in chain length or chemical functionality with a common anion; and different anions for a common cation. RAS-LIF results imply that the surface compositions exhibit a general form of non-stoichiometric behaviour that mimics the well-known Henry's and Raoult's laws at low and high mole fraction, respectively. The extended Langmuir model provides a moderately good single-parameter fit, but higher-order terms are required for an accurate description. The quantitative relationship between RAS-LIF and surface tension, which probes the surface composition only indirectly, is explored for mixtures of [C2mim]+ and [C12mim]+ with a common bis(trifluoromethylsulfonyl)imide ([NTf2]-) anion. Extended Langmuir model fits to surface tension data are broadly consistent with those to RAS-LIF; however, several other common approaches to extracting surface compositions from measured surface tensions result in much larger discrepancies. MD simulations suggest that RAS-LIF faithfully reports on the alkyl-chain exposure at the surface, which is only subtly modified by composition-dependent structural reorganisation.

2.
J Chem Phys ; 139(12): 124304, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24089764

RESUMEN

We report the first systematic experimental and theoretical study of the state-to-state transfer of rotational angular momentum orientation in a (2)Π-rare gas system. CN(X(2)Σ(+)) was produced by pulsed 266 nm photolysis of ICN in a thermal bath (296 K) of Ar collider gas. A pulsed circularly polarized tunable dye laser prepared CN(A(2)Π, v = 4) in two fully state-selected initial levels, j = 6.5 F1e and j = 10.5 F2f, with a known laboratory-frame orientation. Both the prepared levels and a range of product levels, j' F1e and j' F2f, were monitored using the circular polarized output of a tunable diode laser via cw frequency-modulated (FM) spectroscopy in stimulated emission on the CN(A-X) (4,2) band. The FM Doppler lineshapes for co-rotating and counter-rotating pump-and-probe geometries reveal the time-dependence of the populations and orientations. Kinetic fitting was used to extract the state-to-state population transfer rate constants and orientation multipole transfer efficiencies (MTEs), which quantify the degree of conservation of initially prepared orientation in the product level. Complementary full quantum scattering (QS) calculations were carried out on recently computed ab initio potential energy surfaces. Collision-energy-dependent tensor cross sections for ranks K = 0 and 1 were computed for transitions from both initial levels to all final levels. These quantities were integrated over the thermal collision energy distribution to yield predictions of the experimentally observed state-to-state population transfer rate constants and MTEs. Excellent agreement between experiment and theory is observed for both measured quantities. Dramatic oscillations in the MTEs are observed, up to and including changes in the sign of the orientation, as a function of even/odd Δj within a particular spin-orbit and e/f manifold. These oscillations, along with those also observed in the state-to-state rate constants, reflect the rotational parity of the final level. In general, parity-conserving collisions conserve rotational orientation, while parity-changing collisions result in large changes in the orientation. The QS calculations show that the dynamics of the collisions leading to these different outcomes are fundamentally different. We propose that the origin of this behavior lies in interferences between collisions that sample the even and odd-λ terms in the angular expansions of the PESs.

3.
J Chem Phys ; 136(16): 164306, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-22559481

RESUMEN

Angular momentum depolarization and population transfer in CN(A(2)Π, v = 4, j, F(1)e) + Ar collisions have been investigated both experimentally and theoretically. Ground-state CN(X(2)Σ(+)) molecules were generated by pulsed 266-nm laser photolysis of ICN in a thermal (nominally 298 K) bath of the Ar collision partner at a range of pressures. The translationally thermalized CN(X) radicals were optically pumped to selected unique CN(A(2)Π, v = 4, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5, F(1)e) levels on the A-X (4,0) band by a pulsed tunable dye laser. The prepared level was monitored in a collinear geometry by cw frequency-modulated (FM) spectroscopy in stimulated emission on the CN(A-X) (4,2) band. The FM lineshapes for co- and counter-rotating circular pump and probe polarizations were analyzed to extract the time dependence of the population and (to a good approximation) orientation (tensor rank K = 1 polarization). The corresponding parallel and perpendicular linear polarizations yielded population and alignment (K = 2). The combined population and polarization measurements at each Ar pressure were fitted to a 3-level kinetic model, the minimum complexity necessary to reproduce the qualitative features of the data. Rate constants were extracted for the total loss of population and of elastic depolarization of ranks K = 1 and 2. Elastic depolarization is concluded to be a relatively minor process in this system. Complementary full quantum scattering (QS) calculations were carried out on the best previous and a new set of ab initio potential energy surfaces for CN(A)-Ar. Collision-energy-dependent elastic tensor and depolarization cross sections for ranks K = 1 and 2 were computed for CN(A(2)Π, v = 4, j = 1.5-10.5, F(1)e) rotational/fine-structure levels. In addition, integral cross sections for rotationally inelastic transitions out of these levels were computed and summed to yield total population transfer cross sections. These quantities were integrated over a thermal collision-energy distribution to yield the corresponding rate constants. A complete master-equation simulation using the QS results for the selected initial level j = 6.5 gave close, but not perfect, agreement with the near-exponential experimental population decays, and successfully reproduced the observed multimodal character of the polarization decays. On average, the QS population removal rate constants were consistently 10%-15% higher than those derived from the 3-level fit to the experimental data. The QS and experimental depolarization rate constants agree within the experimental uncertainties at low j, but the QS predictions decline more rapidly with j than the observations. In addition to providing a sensitive test of the achievable level of agreement between state-of-the art experiment and theory, these results highlight the importance of multiple collisions in contributing to phenomenological depolarization using any method sensitive to both polarized and unpolarized molecules in the observed level.

4.
J Chem Phys ; 135(23): 234304, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22191872

RESUMEN

A combined theoretical and experimental study of the depolarization of selected NO(X(2)Π, v = 0, j, F, ɛ) levels in collisions with a thermal bath of Ar has been carried out. Rate constants for elastic depolarization of rank K = 1 (orientation) and K = 2 (alignment) were extracted from collision-energy-dependent quantum scattering calculations, along with those for inelastic population transfer to discrete product levels. The rate constants for total loss of polarization of selected initial levels, which are the sum of elastic depolarization and population transfer contributions, were measured using a two-color polarization spectroscopy technique. Theory and experiment agree qualitatively that the rate constants for total loss of polarization decline modestly with j, but the absolute values differ by significantly more than the statistical uncertainties in the measurements. The reasons for this discrepancy are as yet unclear. The lack of a significant K dependence in the experimental data is, however, consistent with the theoretical prediction that elastic depolarization makes only a modest contribution to the total loss of polarization. This supports a previous conclusion that elastic depolarization for NO(X(2)Π) + Ar is significantly less efficient than for the electronically closely related system OH(X(2)Π) + Ar [P. J. Dagdigian and M. H. Alexander, J. Chem. Phys. 130, 204304 (2009)].

5.
J Phys Chem A ; 113(52): 15156-70, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19757776

RESUMEN

Two color polarization spectroscopy has been employed to measure the collisional depolarization of OH(A(2)Sigma(+), v = 1) by He and Ar. Complementary experiments using Zeeman quantum beat spectroscopy have also been performed to determine separately the cross sections for rotational energy transfer (RET) out of selected rotational levels of OH(A, v = 0) + Ar, as well as those for elastic depolarization. This has been achieved by dispersing the emission, so as to observe a single fluorescence transition. Elastic depolarization of OH(A) by Ar is found to be significant with that for loss of rotational alignment exceeding that for loss of orientation. In the case of OH(A) + He, the polarization spectroscopy measurements suggest that elastic depolarization plays a relatively minor role in the loss of the polarization signal compared with RET. The experimental data for OH(A) + Ar are compared in detail with the results of quasi-classical trajectory calculations that accommodate the effects of electron spin. These classical calculations are assessed against the results obtained using full close-coupled open shell quantum mechanical scattering methods. Overall the level of agreement between the two experiments, and between experiment and theory, is very reasonable. Surprisingly, at low N the elastic depolarization cross sections for OH(A) + Ar are found to be quite similar in magnitude to those observed for OH(X) + Ar despite the fact that the well depth in the latter system is considerably smaller than that for OH(A)-Ar. However, for OH(A) + Ar the depolarization cross sections are insensitive to N in the range 1-14. It is proposed that this behavior partly reflects the relatively anisotropic nature of the potential energy surface, which exhibits deep wells of different depths at the two linear configurations OH(A)-Ar and Ar-OH(A), and partly the nature of elastic depolarizing collisions, which must occur with a velocity component perpendicular to the plane of rotation of the diatomic molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...