Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38646812

RESUMEN

Post-exercise reduction in blood pressure, termed post-exercise hypotension (PEH), is relevant for both acute and chronic health reasons and potentially for peripheral cardiovascular adaptations. We investigated the interactive effects of exercise intensity and recovery postures (seated, supine, and standing) on PEH. Thirteen normotensive men underwent a VO2max test on a cycle ergometer and 5 exhaustive constant load trials to determine critical power (CP) and the gas exchange threshold (GET). Subsequently, work-matched exercise trials were performed at two discrete exercise intensities (10% > CP and 10% < GET), with one hour of recovery in each of three postures. For both exercise intensities, standing posture resulted in a more substantial PEH (all P < 0.01). For both standing and seated recovery postures, the higher exercise intensity led to larger reductions in systolic, diastolic and mean arterial pressures (all P < 0.01), whereas in the supine recovery posture, the reduction in diastolic and mean arterial pressures was unaffected by prior exercise intensity (both P > 0.05). PEH is more pronounced during recovery from exercise performed above critical power versus below GET. However, the effect of exercise intensity on PEH is largely abolished when recovery is performed in the supine posture.

2.
Appl Physiol Nutr Metab ; 49(5): 667-679, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377479

RESUMEN

We evaluated changes in hyperhydration and beverage hydration index (BHI, a composite measure of fluid balance after consuming a test beverage relative to water) during resting, induced by the consumption of beverages containing glycerol and sodium supplemented with fast-absorbing sucrose or slow-absorbing isomaltulose. In a randomized crossover, single-blinded protocol (clinical trials registry: UMIN000042644), 14 young physically active adults (three women) consumed 1 L of beverage containing either 7% glycerol + 0.5% sodium (Gly + Na), Gly + Na plus 7% sucrose (Gly + Na + Suc), Gly + Na plus 7% isomaltulose (Gly + Na + Iso), or water (CON) over a 40 min period. We assessed the change in plasma volume (ΔPV), BHI (calculated from cumulative urine output following consumption of water relative to that of the beverage), and blood glucose and sodium for 180 min after initiating ingestion. Total urine volume was reduced in all beverages containing glycerol and sodium compared to CON (all P ≤ 0.002). The addition of isomaltulose increased BHI by ∼45% (3.43 ± 1.0 vs. 2.50 ± 0.7 for Gly + Na, P = 0.011) whereas sucrose did not (2.6 ± 0.6, P = 0.826). The PV expansion was earliest for Gly + Na (30 min), slower for Gly + Na + Suc (90 min), and slowest for Gly + Na + Iso (120 min) with a concomitant lag in the increase of blood glucose and sodium concentrations. Supplementation of beverages containing glycerol and sodium with isomaltulose but not sucrose enhances BHI from those of glycerol and sodium only under a resting state, likely due to the slow absorption of isomaltulose-derived monosaccharides (i.e., glucose and fructose).


Asunto(s)
Estudios Cruzados , Glicerol , Isomaltosa , Isomaltosa/análogos & derivados , Humanos , Isomaltosa/administración & dosificación , Masculino , Femenino , Método Simple Ciego , Adulto Joven , Glicerol/sangre , Adulto , Sacarosa/administración & dosificación , Equilibrio Hidroelectrolítico/efectos de los fármacos , Bebidas , Glucemia/metabolismo , Sodio/orina , Sodio/sangre , Volumen Plasmático
3.
Arthritis Care Res (Hoboken) ; 76(3): 393-402, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37728076

RESUMEN

OBJECTIVE: Preoperative exercise training, or prehabilitation, aims to optimize cardiorespiratory fitness before surgery to reduce the risk of adverse perioperative events and delayed recovery. However, traditional exercise such as walking and cycling can be difficult for people with degenerative joint diseases of the lower limbs, such as osteoarthritis. The purpose of this study was to compare the effect of three low-impact interventions on cardiorespiratory fitness, physical function, and subjective health before total hip or knee arthroplasty. METHODS: This was a randomized controlled trial involving 93 participants with severe knee or hip osteoarthritis awaiting joint replacement surgery. Participants underwent cardiopulmonary exercise testing (to measure peak oxygen consumption [ V ̇ $$ \dot{V} $$ O2 ]), then were randomized to heat therapy (Heat; 20-30 min immersed in 40°C water followed by ~15 min light-resistance exercise), high-intensity interval training (HIIT; 6-8 × 60 s intervals on a cross-trainer or arm ergometer at ~90%-100% peak V ̇ $$ \dot{V} $$ O2 ), or home-based exercise (Home; ~15 min light-resistance exercise); for up to 36 sessions (3 sessions per week for 12 weeks). RESULTS: Peak V ̇ $$ \dot{V} $$ O2 increased by 16% across HIIT and to a greater extent than Heat (+2.5 mL × min-1 × kg-1 [95% CI: 0.5-4.4], P = 0.009) and Home (+3.2 mL × min-1 × kg-1 [1.2-5.2], P = 0.001). The anaerobic threshold increased across HIIT (+1.5 mL × min-1 × kg-1 [0.7-2.3], P < 0.001) and Heat (+1.2 mL × min-1 × kg-1 [0.4-1.9], P = 0.004), but not Home (-0.5 mL × min-1 × kg-1 [-1.3 to 0.3], P = 0.248). Subjective severity of osteoarthritis was unchanged with any intervention (P ≥ 0.250). CONCLUSION: Heat therapy and HIIT improved indices of cardiorespiratory fitness preoperatively in patients who have difficulty performing lower-limb exercise.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Capacidad Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Osteoartritis , Humanos , Calor , Consumo de Oxígeno , Extremidad Superior
4.
J Sports Sci Med ; 22(4): 726-738, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045755

RESUMEN

Being able to tread water effectively can improve the likelihood of survival following accidental immersion. People tread water in various ways, ranging from rudimentary 'doggy-paddle' to more elaborate techniques like the eggbeater, but little is known about the energetic and cognitive requirements of treading water. We therefore aimed to measure the demands of treading water techniques for people of different experience levels. Three cohorts, comprising 21 adult water treading experts (water polo players), 15 intermediate swimmers and 16 inexperienced swimmers, treaded water for 3 min each using four different techniques while cognitive and energetic economy measures were taken. For inexperienced swimmers, the flutter kick and breaststroke patterns produced the lowest self-reported physical and task load (rating of perceived exertion, NASA task load index), while cognitive (probe reaction time), cardiac (heart rate) and metabolic (oxygen consumption) load did not differ between techniques. In contrast, for expert water treaders, both breaststroke and eggbeater patterns produced lower cognitive, cardiac and metabolic loads. For intermediate swimmers, breaststroke resulted in the lowest cardiac and metabolic loads, as well as self-reported task load. Probe reaction time was highest while performing the eggbeater technique, indicating that this technique was challenging to coordinate and cognitively demanding. While the energetic demands of antiphase kicking patterns (such as eggbeater in experts or flutter kick in beginners) may be similarly low, the symmetric coordination of upright breaststroke may explain why this pattern's cognitive economy was favourable for all groups. As the eggbeater can be challenging to perform for many people, an upright breaststroke technique is an adequate alternative to adopt in survival situations.


Asunto(s)
Natación , Deportes Acuáticos , Adulto , Humanos , Natación/fisiología , Consumo de Oxígeno , Cognición
5.
Physiol Rep ; 11(11): e15699, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37300374

RESUMEN

Exercise is painful and difficult to perform for patients with severe lower-limb osteoarthritis; consequently, reduced physical activity contributes to increased cardiometabolic disease risk. The aim of this study was to characterize the acute and adaptive cardiovascular and metabolic effects of two low or no impact therapies in patients with severe lower-limb osteoarthritis: passive heat therapy (Heat) and high-intensity interval training (HIIT) utilizing primarily the unaffected limbs, compared to a control intervention of home-based exercise (Home). Participants completed up to 12 weeks of either Heat (20-30 min immersed in 40°C water followed by ~15-min light resistance exercise), HIIT (6-8 × 60-s intervals on a cross-trainer or arm ergometer at ~90-100% peak V ̇ $$ \dot{V} $$ O2 ) or Home (~15-min light resistance exercise); all 3 sessions/week. Reductions in systolic (12 & 10 mm Hg), diastolic (7 & 4 mm Hg), and mean arterial (8 & 6 mm Hg) blood pressure (BP) were observed following one bout of Heat or HIIT exposure, lasting for the duration of the 20-min monitoring period. Across the interventions (i.e., 12 weeks), resting systolic BP and diastolic BP decreased with Heat (-9 & -4 mm Hg; p < 0.001) and HIIT (-7 & -3 mm Hg; p ≤ 0.011), but not Home (0 & 0 mm Hg; p ≥ 0.785). The systolic and diastolic BP responses to an acute exposure of Heat or HIIT in the first intervention session were moderately correlated with adaptive responses across the intervention (r ≥ 0.54, p ≤ 0.005). Neither intervention improved indices of glycemic control (p = 0.310). In summary, both Heat and HIIT induced potent immediate and adaptive hypotensive effects, and the acute response was moderately predictive of the long-term response.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Osteoartritis , Humanos , Calor , Corazón/fisiología , Presión Sanguínea/fisiología
6.
Am J Physiol Heart Circ Physiol ; 325(1): H66-H76, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172076

RESUMEN

Endurance exercise induces cardiovascular adaptations; the athletic phenotypes of the heart and arteries are well characterized, but few studies have investigated the effects of chronic exercise on the venous system. The aim of this study was to describe the anatomy and function of lower-limb deep and superficial veins in athletes compared with controls. Endurance-trained athletes and untrained controls (13 males, 7 females per group) were examined using ultrasound to measure vein diameter and flow, and air plethysmography to assess calf venous volume dynamics and muscle pump function at rest, during a single step, ambulation (10 steps) and after acute treadmill exercise (30 min ∼80% age-predicted heart rate maximum). Diameters of three of the seven deep veins assessed were larger in athletes (P ≤ 0.0167) and more medial calf perforators were detectable (5 vs. 3, P = 0.0039). Calf venous volume was 22% larger in athletes (P = 0.0057), and calf muscle pump ejection volume and ambulatory venous volume after 10 steps were both greater in athletes (20 and 46% respectively, P ≤ 0.0482). Following acute exercise, flow recovery profiles in deep and superficial veins draining the leg were not different between groups, despite athletes performing approximately four times more work. After exercise, venous volume and ejection volume were reduced by ∼20% in athletes with no change in controls (interaction, P ≤ 0.0372) and although ambulatory venous volume reduced, this remained greater in athletes. These findings highlight venous adaptations that compensate for the demands of regular endurance exercise, all of which are suited to enhance flow through the lower-limb venous system.NEW & NOTEWORTHY Although much literature exists describing adaptations to the heart and arteries in response to endurance exercise training, less is known about the effects on the venous system. Characteristics of "the athlete's vein" described here include deep and perforator vein remodeling, improved drainage, and greater calf venous volume at rest and on calf muscle pump activation. Following exercise, athletes demonstrated prompt flow recovery and appropriate volume reductions, and veins beneficially adapt to better tolerate the demands of regular physical activity.


Asunto(s)
Extremidad Inferior , Venas , Masculino , Femenino , Humanos , Venas/diagnóstico por imagen , Extremidad Inferior/irrigación sanguínea , Ultrasonografía , Pletismografía , Atletas , Resistencia Física
7.
J Physiol ; 601(11): 2121-2137, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36631068

RESUMEN

Intermittent fasting and exercise provide neuroprotection from age-related cognitive decline. A link between these two seemingly distinct stressors is their capability to steer the brain away from exclusively glucose metabolism. This cerebral substrate switch has been implicated in upregulating brain-derived neurotrophic factor (BDNF), a protein involved in neuroplasticity, learning and memory, and may underlie some of these neuroprotective effects. We examined the isolated and interactive effects of (1) 20-h fasting, (2) 90-min light exercise, and (3) high-intensity exercise on peripheral venous BDNF in 12 human volunteers. A follow-up study isolated the influence of cerebrovascular shear stress on circulating BDNF. Fasting for 20 h decreased glucose and increased ketones (P ≤ 0.0157) but had no effect on BDNF (P ≥ 0.4637). Light cycling at 25% of peak oxygen uptake ( V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ) increased serum BDNF by 6 ± 8% (independent of being fed or fasted) and was mediated by a 7 ± 6% increase in platelets (P < 0.0001). Plasma BDNF was increased from 336 pg l-1 [46,626] to 390 pg l-1 [127,653] by 90-min of light cycling (P = 0.0128). Six 40-s intervals at 100% of V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ increased plasma and serum BDNF, as well as the BDNF-per-platelet ratio 4- to 5-fold more than light exercise did (P ≤ 0.0044). Plasma BDNF was correlated with circulating lactate during the high-intensity intervals (r = 0.47, P = 0.0057), but not during light exercise (P = 0.7407). Changes in cerebral shear stress - whether occurring naturally during exercise or induced experimentally with inspired CO2 - did not correspond with changes in BDNF (P ≥ 0.2730). BDNF responses to low-intensity exercise are mediated by increased circulating platelets, and increasing either exercise duration or particularly intensity is required to liberate free BDNF. KEY POINTS: Intermittent fasting and exercise both have potent neuroprotective effects and an acute upregulation of brain-derived neurotrophic factor (BDNF) appears to be a common mechanistic link. Switching the brain's fuel source from glucose to either ketone bodies or lactate, i.e. a cerebral substrate switch, has been shown to promote BDNF production in the rodent brain. Fasting for 20 h caused a 9-fold increase in ketone body delivery to the brain but had no effect on any metric of BDNF in peripheral circulation at rest. Prolonged (90 min) light cycling exercise increased plasma- and serum-derived BDNF irrespective of being fed or fasted and seemed to be independent of changes in cerebral shear stress. Six minutes of high-intensity cycling intervals increased every metric of circulating BDNF by 4 to 5 times more than prolonged low-intensity cycling; the increase in plasma-derived BDNF was correlated with a 6-fold increase in circulating lactate irrespective of feeding or fasting. Compared to 1 day of fasting with or without prolonged light exercise, high-intensity exercise is a much more efficient means to increase BDNF in circulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fármacos Neuroprotectores , Humanos , Estudios de Seguimiento , Ayuno , Ácido Láctico
8.
Exp Physiol ; 108(2): 207-220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36537856

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the independent effects of air temperature and humidity on performance, physiological and perceptual responses during endurance exercise? What is the main finding and its importance? When examined independently, elevated air temperature increased heat strain and impaired aerobic exercise performance, but to a lesser extent than has been reported previously. These findings highlight the importance of absolute humidity relative to temperature when exercising or working under severe heat stress. ABSTRACT: Many studies have reported that ambient heat stress increases physiological and perceptual strain and impairs endurance exercise, but effects of air temperature per se remain almost unexamined. Most studies have used matched relative humidity, thereby exponentially increasing absolute humidity (water content in air) concurrently with temperature. Absolute (not relative) humidity governs evaporative rate and is more important at higher work rates and air temperatures. Therefore, we examined the independent effects of air temperature and humidity on performance, thermal, cardiovascular and perceptual measures during endurance exercise. Utilizing a crossover design, 14 trained participants (7 females) completed 45 min fixed-intensity cycling (70% V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ) followed by a 20-km time trial in each of four environments: three air temperatures at matched absolute humidity (Cool, 18°C; Moderate, 27°C; and Hot, 36°C; at 1.96 kPa, air velocity ∼4.5 m/s), and one at elevated humidity (Hot Humid, 36°C at 3.92 kPa). Warmer air caused warmer skin (0.5°C/°C; P < 0.001), higher heart rate (1 bpm/°C; P < 0.001), sweat rate (0.04 l/h/°C; P < 0.001) and thermal perceptions during fixed-intensity exercise, but minimally affected core temperature (<0.01°C/°C; P = 0.053). Time-trial performance was comparable between Cool and Moderate (95% CI: -1.4, 5.9%; P = 0.263), but 3.6-6% slower in Hot (95% CI: ±2.4%; P ≤ 0.006). Elevated humidity increased core temperature (P < 0.001), perceived temperature and discomfort but not skin temperature or heart rate, and reduced mean blood pressure (P = 0.046) during fixed-intensity exercise. Elevated humidity impaired time-trial performance by 3.4% (95% CI: ±2.2%; P = 0.006). In conclusion, these findings quantify the importance of absolute humidity alongside air temperature when exercising under severe heat stress.


Asunto(s)
Regulación de la Temperatura Corporal , Trastornos de Estrés por Calor , Femenino , Humanos , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Calor , Humedad , Temperatura , Estudios Cruzados
9.
Br J Anaesth ; 130(2): 122-132, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529576

RESUMEN

Epidemiological evidence has highlighted a strong relationship between cardiorespiratory fitness and surgical outcomes; specifically, fitter patients possess heightened resilience to withstand the surgical stress response. This narrative review draws on exercise and surgical physiology research to discuss and hypothesise the potential mechanisms by which higher fitness affords perioperative benefit. A higher fitness, as indicated by higher peak rate of oxygen consumption and ability to sustain metabolic homeostasis (i.e. higher anaerobic threshold) is beneficial postoperatively when metabolic demands are increased. However, the associated adaptations with higher fitness, and the related participation in regular exercise or physical activity, might also underpin the observed perioperative benefit through a process of hormesis, a protective adaptive response to the moderate and intermittent stress of exercise. Potential mediators discussed include greater antioxidant capacity, metabolic flexibility, glycaemic control, lean body mass, and improved mood.


Asunto(s)
Capacidad Cardiovascular , Humanos , Ejercicio Físico/fisiología , Terapia por Ejercicio , Umbral Anaerobio , Consumo de Oxígeno/fisiología , Aptitud Física/fisiología , Prueba de Esfuerzo
10.
J Appl Physiol (1985) ; 133(6): 1394-1406, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302157

RESUMEN

Physical activity is the most common source of heat strain for humans. The thermal strain of physical activity causes overbreathing (hyperventilation) and this has adverse physiological repercussions. The mechanisms underlying heat-induced hyperventilation during exercise are unknown, but recent evidence supports a primary role of carotid body hyperexcitability (increased tonic activity and sensitivity) underpinning hyperventilation in passively heated humans. In a repeated-measures crossover design, 12 healthy participants (6 female) completed two low-intensity cycling exercise conditions (25% maximal aerobic power) in randomized order, one with core temperature (TC) kept relatively stable near thermoneutrality, and the other with progressive heat strain to +2°C TC. To provide a complete examination of carotid body function under graded heat strain, carotid body tonic activity was assessed indirectly by transient hyperoxia, and its sensitivity estimated by responses to both isocapnic and poikilocapnic hypoxia. Carotid body tonic activity was increased by 220 ± 110% during cycling alone, and by 400 ± 290% with supplemental thermal strain to +1°C TC, and 600 ± 290% at +2°C TC (interaction, P = 0.0031). During exercise with heat stress at both +1°C and +2°C TC, carotid body suppression by hyperoxia decreased ventilation below the rates observed during exercise without heat stress (P < 0.0147). Carotid body sensitivity was increased by up to 230 ± 190% with exercise alone, and by 290 ± 250% with supplemental heating to +1°C TC and 510 ± 470% at +2°C TC (interaction, P = 0.0012). These data indicate that the carotid body is further activated and sensitized by heat strain during exercise and this largely explains the added drive to breathe.NEW & NOTEWORTHY Physical activity is the most common way humans increase their core temperature, and excess breathing in the heat can limit heat tolerance and performance, and may increase the risk of heat-related injury. Dose-dependent increases in carotid body tonic activity and sensitivity with core heating provide compelling evidence that carotid body hyperexcitability is the primary cause of heat-induced hyperventilation during exercise.


Asunto(s)
Cuerpo Carotídeo , Hiperoxia , Humanos , Femenino , Hiperventilación , Ejercicio Físico/fisiología , Respiración , Temperatura Corporal/fisiología , Calor , Regulación de la Temperatura Corporal/fisiología
11.
J Physiol ; 600(15): 3603-3624, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35731687

RESUMEN

Humans hyperventilate under heat and cold strain. This hyperventilatory response has detrimental consequences including acid-base dysregulation, dyspnoea, decreased cerebral blood flow and accelerated brain heating. The ventilatory response to hypoxia is exaggerated under whole-body heating and cooling, indicating that altered carotid body function might contribute to thermally mediated hyperventilation. To address whether the carotid body might contribute to heat- and cold-induced hyperventilation, we indirectly measured carotid body tonic activity via hyperoxia, and carotid body sensitivity via hypoxia, under graded heat and cold strain in 13 healthy participants in a repeated-measures design. We hypothesised that carotid body tonic activity and sensitivity would be elevated in a dose-dependent manner under graded heat and cold strain, thereby supporting its role in driving thermally mediated hyperventilation. Carotid body tonic activity was increased in a dose-dependent manner with heating, reaching 175% above baseline (P < 0.0005), and carotid body suppression with hyperoxia removed all of the heat-induced increase in ventilation (P = 0.9297). Core cooling increased carotid body activity by up to 250% (P < 0.0001), but maximal values were reached with mild cooling and thereafter plateaued. Carotid body sensitivity to hypoxia was profoundly increased by up to 180% with heat stress (P = 0.0097), whereas cooling had no detectable effect on hypoxic sensitivity. In summary, cold stress increased carotid body tonic activity and this effect was saturated with mild cooling, whereas heating had clear dose-dependent effects on carotid body tonic activity and sensitivity. These dose-dependent effects with heat strain indicate that the carotid body probably plays a primary role in driving heat-induced hyperventilation. KEY POINTS: Humans over-breathe (hyperventilate) when under heat and cold stress, and though this has detrimental physiological repercussions, the mechanisms underlying this response are unknown. The carotid body, a small organ that is responsible for driving hyperventilation in hypoxia, was assessed under incremental heat and cold strain. The carotid body drive to breathe, as indirectly assessed by transient hyperoxia, increased in a dose-dependent manner with heating, reaching 175% above baseline; cold stress similarly increased the carotid body drive to breathe, but did not show dose-dependency. Carotid body sensitivity, as indirectly assessed by hypoxic ventilatory responses, was profoundly increased by 70-180% with mild and severe heat strain, whereas cooling had no detectable effect. Carotid body hyperactivity and hypersensitivity are two interrelated mechanisms that probably underlie the increased drive to breathe with heat strain, whereas carotid body hyperactivity during mild cooling may play a subsidiary role in cold-induced hyperventilation.


Asunto(s)
Cuerpo Carotídeo , Hiperoxia , Humanos , Hiperventilación , Hipoxia , Respiración
12.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R59-R67, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503236

RESUMEN

Teaching traditionally asserts that the arterial pressure pulse is dampened across the capillary bed to the extent that pulsatility is nonexistent in the venous circulation of the lower limbs. Herein, we present evidence of transmission of arterial pulsations across the capillary network into perforator veins in the lower limbs of healthy, heat-stressed humans. Perforator veins are connections from the superficial veins that drain into the deep veins. When assessed using ultrasound at rest, they infrequently demonstrate flow, and a pulsatile flow waveform is not described. We investigated perforator vein pulsatility in 10 young, healthy volunteers who underwent passive heating by +2°C core body temperature via a hot-water-perfused suit, and 5 who also underwent active heating by +2°C via low-intensity cycling while wearing the hot-water-perfused suit. At +0.5°C increments in temperature, blood velocity in an ankle perforator vein was measured using duplex ultrasound. In all perforators with heating, sustained flow was demonstrated, with a pulsatile waveform that was synchronous with the cardiac cycle. The maximum velocity was 30 ± 13 cm/s with passive heating and approximately half with active heating (P = 0.04). The small veins of the skin at the ankle also demonstrated increased perfusion with pulsatility, seen with low-velocity microvascular imaging technology. We consider explanations for this pulsatility and conclude that it is propagated from the arterial inflow through the skin microcirculation as a result of increased dilatation and flow volume and that this is a normal response to increased skin blood flow.


Asunto(s)
Pierna , Extremidad Inferior , Velocidad del Flujo Sanguíneo/fisiología , Humanos , Pierna/irrigación sanguínea , Flujo Pulsátil , Agua
13.
Exp Physiol ; 107(5): 429-440, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35193165

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the profiles of acute physiological and psychophysical strain during and in recovery from different modes of heating, and to what extent do these diminish after repeated exposure? What is the main finding and its importance? Mode of heating affects the strain profiles during heat stress and recovery. Exercise in the heat incurred the greatest cardiovascular strain during heating and recovery. Humid heat was poorly tolerated despite heat strain being no greater than in other heating modes, and tolerance did not improve with multiple exposures. ABSTRACT: Heat stress is common and arises endogenously and exogenously. It can be acutely hazardous while also increasingly advocated to drive health and performance-related adaptations. Yet, the nature of strain (deviation in regulated variables) imposed by different heating modes is not well established, despite the potential for important differences. We, therefore, compared three modes of heat stress for thermal, cardiovascular and perceptual strain profiles during exposure and recovery when experienced as a novel stimulus and an accustomed stimulus. In a crossover design, 13 physically active participants (five females) underwent 5 days of 60-min exposures to hot water immersion (40°C), sauna (55°C, 54% relative humidity) and exercise in the heat (40°C, 52% relative humidity), and a thermoneutral water immersion control (36.5°C), each separated by ≥4 weeks. Physiological (thermal, cardiovascular, haemodynamic) and psychophysical strain responses were assessed on days 1 and 5. Sauna evoked the warmest skin (40°C; P < 0.001) but exercise in the heat caused the largest increase in core temperature, sweat rate, heart rate (post hoc comparisons all P < 0.001) and systolic blood pressure (P ≤ 0.002), and possibly decrease in diastolic blood pressures (P ≤ 0.130), regardless of day. Thermal sensation and feeling state were more favourable on day 5 than on day 1 (P ≤ 0.021), with all modes of heat being equivalently uncomfortable (P ≥ 0.215). Plasma volume expanded the largest extent during immersions (P < 0.001). The current data highlight that exercising in the heat generates a more complex strain profile, while passive heat stress in humid heat has lower tolerance and more cardiovascular strain than hot water immersion.


Asunto(s)
Trastornos de Estrés por Calor , Calor , Aclimatación/fisiología , Temperatura Corporal , Regulación de la Temperatura Corporal/fisiología , Estudios Cruzados , Femenino , Frecuencia Cardíaca/fisiología , Respuesta al Choque Térmico , Humanos , Masculino , Agua
14.
Exp Physiol ; 107(4): 337-349, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34957632

RESUMEN

NEW FINDINGS: What is the central question to the study? Are primary indices of heat adaptation (e.g., expansion of plasma volume and reduction in resting core temperature) differentially affected by the three major modes of short-term heat acclimation, that is, exercise in the heat, hot water immersion and sauna? What it the main finding and its importance? The three modes elicited typical adaptations expected with short-term heat acclimation, but these were not significantly different between modes. This comparison has not previously been made and highlights that individuals can expect similar adaptation to heat regardless of the mode used. ABSTRACT: Heat acclimation (HA) can improve heat tolerance and cardiovascular health. The mode of HA potentially impacts the magnitude and time course of adaptations, but almost no comparative data exist. We therefore investigated adaptive responses to three common modes of HA, particularly with respect to plasma volume. Within a crossover repeated-measures design, 13 physically active participants (five female) undertook four, 5-day HA regimes (60 min/day) in randomised order, separated by ≥4 weeks. Rectal temperature (Tre ) was clamped at neutrality via 36.6°C (thermoneutral) water immersion (TWI; i.e., control condition), or raised by 1.5°C via heat stress in 40°C water, sauna (55°C, 52% relative humidity), or exercise in humid heat (40°C, 52% relative humidity; ExH). Adaptation magnitude was assessed as the pooled response across days 4-6, while kinetics was assessed via the 6-day time series. Plasma volume expansion was similar in all heated conditions but only higher than TWI in exercise in the heat (ExH) (by 4%, P = 0.036). Approximately two-thirds of the expansion was attained within the initial 24 h and was moderately related to that present on day 6, regardless of HA mode (r = 0.560-0.887). Expansion was mediated by conservation of both sodium and albumin content, with little evidence for these having differential roles between modes (P = 0.706 and 0.320, respectively). Resting Tre decreased by 0.1-0.3°C in all heated conditions, and systolic blood pressure decreased by 4 mmHg, but not differentially between conditions (P ≥ 0.137). In conclusion, HA mode did not substantially affect the magnitude or rate of adaptation in key resting markers of short-term HA.


Asunto(s)
Aclimatación , Calor , Aclimatación/fisiología , Adaptación Fisiológica , Ejercicio Físico/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Cinética
15.
Front Physiol ; 12: 759240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803740

RESUMEN

We investigated whether substituting the final half within 60-min bouts of exercise with passive warm or cold water immersion would provide similar or greater benefits for cardiometabolic health. Thirty healthy participants were randomized to two of three short-term training interventions in a partial crossover (12 sessions over 14-16 days, 4 week washout): (i) EXS: 60 min cycling 70% maximum heart rate (HRmax), (ii) WWI: 30 min cycling then 30 min warm water (38-40°C) immersion, and/or (iii) CWI: 30 min cycling then 30 min cold water (10-12°C) immersion. Before and after, participants completed a 20 min cycle work trial, V . O2max test, and an Oral Glucose Tolerance Test during which indirect calorimetry was used to measure substrate oxidation and metabolic flexibility (slope of fasting to post-prandial carbohydrate oxidation). Data from twenty two participants (25 ± 5 year, BMI 23 ± 3 kg/m2, Female = 11) were analyzed using a fixed-effects linear mixed model. V . O2max increased more in EXS (interaction p = 0.004) than CWI (95% CI: 1.1, 5.3 mL/kg/min, Cohen's d = 1.35), but not WWI (CI: -0.4, 3.9 mL/kg/min, d = 0.72). Work trial distance and power increased 383 ± 223 m and 20 ± 6 W, respectively, without differences between interventions (interaction both p > 0.68). WWI lowered post-prandial glucose ∼9% (CI -1.9, -0.5 mmol/L; d = 0.63), with no difference between interventions (interaction p = 0.469). Substituting the second half of exercise with WWI provides similar cardiometabolic health benefits to time matched exercise, however, substituting with CWI does not.

16.
PLoS One ; 16(1): e0244841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33395691

RESUMEN

The objective of this study was to compare acute effects of prolonged sitting, prolonged standing and sitting interrupted with regular activity breaks on vascular function and postprandial glucose metabolism. In a randomized cross-over trial, 18 adults completed: 1. Prolonged Sitting; 2. Prolonged Standing and 3. Sitting with 2-min walking (5 km/h, 10% incline) every 30 min (Regular Activity Breaks). Flow mediated dilation (FMD) was measured in the popliteal artery at baseline and 6 h. Popliteal artery hemodynamics, and postprandial plasma glucose and insulin were measured over 6 h. Neither raw nor allometrically-scaled FMD showed an intervention effect (p = 0.285 and 0.159 respectively). Compared to Prolonged Sitting, Regular Activity Breaks increased blood flow (overall effect of intervention p<0.001; difference = 80%; 95% CI 34 to 125%; p = 0.001) and net shear rate (overall effect of intervention p<0.001; difference = 72%; 95% CI 30 to 114%; p = 0.001) at 60 min. These differences were then maintained for the entire 6 h. Prolonged Standing increased blood flow at 60 min only (overall effect of intervention p<0.001; difference = 62%; 95% CI 28 to 97%; p = 0.001). Regular Activity Breaks decreased insulin incremental area under the curve (iAUC) when compared to both Prolonged Sitting (overall effect of intervention P = 0.001; difference = 28%; 95% CI 14 to 38%; p<0.01) and Prolonged Standing (difference = 19%; 95% CI 4 to 32%, p = 0.015). There was no intervention effect on glucose iAUC or total AUC (p = 0.254 and 0.450, respectively). In normal-weight participants, Regular Activity Breaks induce increases in blood flow, shear stress and improvements in postprandial metabolism that are associated with beneficial adaptations. Physical activity and sedentary behaviour messages should perhaps focus more on the importance of frequent movement rather than simply replacing sitting with standing.


Asunto(s)
Presión Arterial/fisiología , Ejercicio Físico/fisiología , Hiperglucemia/metabolismo , Adulto , Área Bajo la Curva , Glucemia/metabolismo , Estudios Cruzados , Femenino , Glucosa/metabolismo , Hemodinámica/fisiología , Humanos , Insulina/metabolismo , Insulina Regular Humana/metabolismo , Masculino , Periodo Posprandial , Conducta Sedentaria , Sedestación , Posición de Pie , Triglicéridos/sangre , Caminata/fisiología
17.
Int J Sport Nutr Exerc Metab ; 31(3): 244-249, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508779

RESUMEN

Ultrasound is an appealing tool to assess body composition, combining the portability of a field method with the accuracy of a laboratory method. However, unlike other body composition methods, the effect of hydration status on validity is unknown. This study evaluated the impact of acute hydration changes on ultrasound measurements of subcutaneous fat thickness and estimates of body fat percentage. In a crossover design, 11 adults (27.1 ± 10.5 years) completed dehydration and hyperhydration trials to alter body mass by approximately ±2%. Dehydration was achieved via humid heat (40 °C, 60% relative humidity) with exercise, whereas hyperhydration was via ingestion of lightly salted water. Ultrasound measurements were taken at 11 body sites before and after each treatment. Participants lost 1.56 ± 0.58 kg (-2.0 ± 0.6%) during the dehydration trial and gained 0.90 ± 0.21 kg (1.2 ± 0.2%) during the hyperhydration trial even after urination. The sum of fat thicknesses as measured by ultrasound differed by <0.90 mm across trials (p = .588), and ultrasound estimates of body fat percentage differed by <0.5% body fat. Ultrasound measures of subcutaneous adipose tissue were unaffected by acute changes in hydration status by extents beyond which are rare and overtly self-correcting, suggesting that this method provides reliable and robust body composition results even when subjects are not euhydrated.


Asunto(s)
Composición Corporal , Deshidratación/diagnóstico por imagen , Estado de Hidratación del Organismo , Grasa Subcutánea/diagnóstico por imagen , Ultrasonografía , Adiposidad , Adulto , Índice de Masa Corporal , Estudios Cruzados , Deshidratación/etiología , Ingestión de Líquidos , Agua Potable/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Exp Physiol ; 105(12): 2099-2109, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058304

RESUMEN

NEW FINDINGS: What is the central question of this study? How does resistance exercise affect peripheral haemodynamics in the active and inactive limb? What is the main finding and its importance? Preliminary data indicate that resistance exercise increases flow and shear rate in the active limb transiently. The same exercise has minimal, short-lasting influence on peripheral haemodynamics in the inactive limb, but further research is required to elaborate on resistance exercise-mediated changes in vascular function in active and inactive limbs. ABSTRACT: Current evidence indicates that to achieve maximum health benefits, regular resistance exercise should be a key component of structured physical activity. Several studies have revealed that regular resistance exercise may be associated with impaired vascular function, although this finding is inconsistent. Proposed explanations for impairment include substantial increases in blood pressure and increased retrograde blood flow in active limbs promoted by resistance exercise. However, few studies have examined the acute haemodynamics of resistance exercise in active - and even fewer in inactive - limbs. The purpose of this study was to characterise the haemodynamic responses in peripheral arteries in active and inactive limbs in response to resistance exercise using upper and lower limbs. Ten participants (five male, five female) familiar with resistance training performed three sets of 10 isotonic repetitions of right-sided bicep curls or knee extensions on separate days. Blood flow, shear rate and muscle oxygenation in the active and inactive limb, and blood pressure were measured before and for 3 min after each set. Blood flow increased in response to resistance exercise in the active limb (∼8-fold and ∼6-fold for the upper and lower limb respectively), with concurrent significant increases in mean and antegrade shear rate. In the inactive limb, blood flow more than doubled for both upper and lower limb exercise, transiently, with no significant change in retrograde shear rate. These acute blood flow profiles following resistance exercise are not indicative of long-term vessel impairment based on current understanding of blood flow and shear stress patterns.


Asunto(s)
Ejercicio Físico/fisiología , Extremidades/fisiología , Flujo Sanguíneo Regional/fisiología , Adaptación Fisiológica/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Arteria Braquial/fisiología , Endotelio Vascular/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Estrés Mecánico , Vasodilatación/fisiología , Adulto Joven
19.
Eur J Appl Physiol ; 120(7): 1637-1649, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32476054

RESUMEN

PURPOSE: Cognition, cerebral blood flow (CBF) and its major regulator (i.e., arterial CO2), increase with submaximal exercise and decline with severe exercise. These responses may depend on fitness. We investigated whether exercise-related changes in cognition are mediated in part by concomitant changes in CBF and CO2, in ten active (26 ± 3 years) and ten inactive (24 ± 6 years) healthy adults. METHODS: Participants completed two randomised sessions; exercise and a resting CO2-control-wherein end-tidal CO2 (PETCO2) was matched between sessions and clamped across conditions at exercise-associated increases (+ 3 mmHg) and hypercapnia (+ 10 mmHg). Exercise comprised inclined walking at submaximal and severe intensities. CBF was indexed using right middle cerebral artery blood velocity (MCAv). Cognition (visuomotor, switching and inhibitory response time) was measured before, during, and after exercise. RESULTS: MCAv and its inverted-U response to exercise were comparable between groups, whereas visuomotor performance improved during submaximal exercise in the active group only (p = 0.046). Submaximal, but not severe (p = 0.33), exercise increased MCAv (p ≤ 0.03). Hypercapnia increased MCAv during the CO2-control (27 ± 12%) and during submaximal exercise (39 ± 17%; p < 0.01). Despite the acute increases in MCAv, cognition was impaired during both levels of increased PETCO2 (3-6%; p ≤ 0.04), regardless of session. Overall, resting or exercise-related changes in PETCO2 and MCAv did not associate with changes in cognition (r ≤ 0.29 ± 0.34). Fitness ([Formula: see text]O2MAX) was associated with baseline cognition (r ≥ 0.50). CONCLUSION: Acute increases in PETCO2 and MCAv were not associated with improved cognition. In fact, cognitive performance was impaired at both levels of increased PETCO2, regardless of session. Finally, fitter people were found to have better cognition.


Asunto(s)
Dióxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Cognición/fisiología , Femenino , Humanos , Masculino , Arteria Cerebral Media/fisiología
20.
J Physiol ; 598(13): 2513-2530, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347544

RESUMEN

The increasing number of older adults has seen a corresponding growth in those affected by neurovascular diseases, including stroke and dementia. Since cures are currently unavailable, major efforts in improving brain health need to focus on prevention, with emphasis on modifiable risk factors such as promoting physical activity. Moderate-intensity continuous training (MICT) paradigms have been shown to confer vascular benefits translating into improved musculoskeletal, cardiopulmonary and cerebrovascular function. However, the time commitment associated with MICT is a potential barrier to participation, and high-intensity interval training (HIIT) has since emerged as a more time-efficient mode of exercise that can promote similar if not indeed superior improvements in cardiorespiratory fitness for a given training volume and further promote vascular adaptation. However, randomised controlled trials (RCTs) investigating the impact of HIIT on the brain are surprisingly limited. The present review outlines how the HIIT paradigm has evolved from a historical perspective and describes the established physiological changes including its mechanistic bases. Given the dearth of RCTs, the vascular benefits of MICT are discussed with a focus on the translational neuroprotective benefits including their mechanistic bases that could be further potentiated through HIIT. Safety implications are highlighted and components of an optimal HIIT intervention are discussed including practical recommendations. Finally, statistical effect sizes have been calculated to allow prospective research to be appropriately powered and optimise the potential for detecting treatment effects. Future RCTs that focus on the potential clinical benefits of HIIT are encouraged given the prevalence of cognitive decline in an ever-ageing population.


Asunto(s)
Capacidad Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Encéfalo , Ejercicio Físico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...