Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(43): 20109-20117, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36264837

RESUMEN

Stereochemical control of photochemical reactions that occur via triplet energy transfer remains a challenge. Suppressing off-catalyst stereorandom reactivity is difficult for highly reactive open-shell intermediates. Strategies for suppressing racemate-producing, off-catalyst pathways have long focused on formation of ground state, substrate-catalyst chiral complexes that are primed for triplet energy transfer via a photocatalyst in contrast to their off-catalyst counterparts. Herein, we describe a strategy where both a chiral catalyst-associated vinylpyridine and a nonassociated, free vinylpyridine substrate can be sensitized by an Ir(III) photocatalyst, yet high levels of diastereo- and enantioselectivity in a [2 + 2] photocycloaddition are achieved through a preferred, highly organized transition state. This mechanistic paradigm is distinct from, yet complementary to current approaches for achieving high levels of stereocontrol in photochemical transformations.


Asunto(s)
Alquenos , Reacción de Cicloadición , Estereoisomerismo , Catálisis , Alquenos/química , Transferencia de Energía
2.
ACS Catal ; 12(13): 7798-7803, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35832573

RESUMEN

Most known methods to access δ-lactams with stereogenic centers at the α- and ß-positions are highly selective for the contra-thermodynamic syn diastereomer, typically via hydrogenation of the corresponding pyridinones or quinolinones. We describe here the development of a photoredox-mediated hydrogen atom transfer (HAT) approach for the epimerization of δ-lactams to access the more stable anti diastereomers from the contra-thermodynamic syn isomers. The reaction displays broad functional group compatibility, including acid, ester, 1°, 2° and 3° amide, carbamate, and pyridyl groups, and was effective for a range of differently substituted monocyclic and bicyclic lactams. Experimentally observed diastereoselectivities are consistent with the calculated relative stabilities of lactam diastereomers. Convergence to the same diastereomer ratio from the syn- and anti- diastereomers establishes that reversible epimerization provides an equilibrium mixture of diastereomers. Additionally, deuterium labeling and luminescence quenching studies shed further light on the mechanism of the reaction.

3.
Science ; 377(6607): 742-747, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35862490

RESUMEN

We experimentally discovered and theoretically analyzed a photochemical mechanism, which we term proton-coupled energy transfer (PCEnT). A series of anthracene-phenol-pyridine triads formed a local excited anthracene state after light excitation at a wavelength of ~400 nanometers (nm), which led to fluorescence around 550 nm from the phenol-pyridine unit. Direct excitation of phenol-pyridine would have required ~330-nm light, but the coupled proton transfer within the phenol-pyridine unit lowered its excited-state energy so that it could accept excitation energy from anthracene. Singlet-singlet energy transfer thus occurred despite the lack of spectral overlap between the anthracene fluorescence and the phenol-pyridine absorption. Moreover, theoretical calculations indicated negligible charge transfer between the anthracene and phenol-pyridine units. We construe PCEnT as an elementary reaction of possible relevance to biological systems and future photonic devices.

4.
J Phys Chem A ; 125(35): 7670-7684, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34432465

RESUMEN

Concerted proton-coupled electron transfer (PCET) in the Marcus inverted region was recently demonstrated (Science 2019, 364, 471-475). Understanding the requirements for such reactivity is fundamentally important and holds promise as a design principle for solar energy conversion systems. Herein, we investigate the solvent polarity and temperature dependence of photoinduced proton-coupled charge separation (CS) and charge recombination (CR) in anthracene-phenol-pyridine triads: 1 (10-(4-hydroxy-3-(4-methylpyridin-2-yl)benzyl)anthracene-9-carbonitrile) and 2 (10-(4-hydroxy-3-(4-methoxypyridin-2-yl)benzyl)anthracene-9-carbonitrile). Both the CS and CR rate constants increased with increasing polarity in acetonitrile:n-butyronitrile mixtures. The kinetics were semi-quantitatively analyzed where changes in dielectric and refractive index, and thus consequently changes in driving force (-ΔG°) and reorganization energy (λ), were accounted for. The results were further validated by fitting the temperature dependence, from 180 to 298 K, in n-butyronitrile. The analyses support previous computational work where transitions to proton vibrational excited states dominate the CR reaction with a distinct activation free energy (ΔG*CR ∼ 140 meV). However, the solvent continuum model fails to accurately describe the changes in ΔG° and λ with temperature via changes in dielectric constant and refractive index. Satisfactory modeling was obtained using the results of a molecular solvent model [J. Phys. Chem. B 1999, 103, 9130-9140], which predicts that λ decreases with temperature, opposite to that of the continuum model. To further assess the solvent polarity control in the inverted region, the reactions were studied in toluene. Nonpolar solvents decrease both ΔG°CR and λ, slowing CR into the nanosecond time regime for 2 in toluene at 298 K. This demonstrates how PCET in the inverted region may be controlled to potentially use proton-coupled CS states for efficient solar fuel production and photoredox catalysis.

5.
J Phys Chem B ; 123(19): 4301-4310, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31021637

RESUMEN

The rational design of photoacids requires accessible predictive models of the electronic effect of functional groups on chemical templates of interest. Here, the effect of substituents on the photoacidity and excited-state proton transfer (PT) pathways of prototype 2-naphthol (2OH) at the symmetric C7 position was investigated through photochemical and computational studies of 7-amino-2-naphthol (7N2OH) and 7-methoxy-2-naphthol (7OMe2OH). Time-resolved emission experiments of 7N2OH revealed that the presence of an electron-withdrawing versus electron-donating group (EWG vs EDG, NH3+ vs NH2) led to a drastic decline in photoacidity: p Ka* = 1.1 ± 0.2 vs 9.6 ± 0.2. Time-dependent density functional theory calculations with explicit water molecules confirmed that the excited neutral state (x = NH2) is greatly stabilized by water, with equation-of-motion coupled cluster singles and doubles calculations supporting potential mixing between the La and Lb states. Similar suppression of photoacidity, however, was not observed for 7OMe2OH with EDG OCH3, p Ka* = 2.7 ± 0.1. Hammett plots of the ground- and excited-state PT reactions of substituted 7-x-2OH compounds (x = CN, NH3+, H, CH3, OCH3, OH, and NH2) vs Hammett parameters σp showed breaks in the linearity between the EDG and EWG regions: ρ ∼ 0 vs 1.14 and ρ* ∼ 0 vs 3.86. The divergent acidic behavior most likely arises from different mixing mechanisms of the lowest Lb state with the La and possible Bb states upon substitution of naphthalene in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...