Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697987

RESUMEN

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Asunto(s)
Antineoplásicos , Proliferación Celular , Complejo I de Transporte de Electrón , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Antineoplásicos/farmacología , Ratones , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Desacopladores/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Ratas , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/antagonistas & inhibidores
2.
J Cachexia Sarcopenia Muscle ; 14(5): 2003-2015, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667552

RESUMEN

BACKGROUND: Combating malnutrition and cachexia is a core challenge in oncology. To limit muscle mass loss, the use of proteins in cancer is encouraged by experts in the field, but it is still debated due to their antagonist effects. Indeed, a high protein intake could preserve lean body mass but may promote tumour growth, whereas a low-protein diet could reduce tumour size but without addressing cachexia. Here we used a realistic rodent model of cancer and chemotherapy to evaluate the influence of different protein intakes on cachexia, tumour response to chemotherapy and immune system response. The goal is to gain a closer understanding of the effect of protein intake in cancer patients undergoing chemotherapy. METHODS: Female Fischer 344 rats were divided into six groups: five groups (n = 14 per group) with cancer (Ward colon tumour) and chemotherapy were fed with isocaloric diets with 8%, 12%, 16%, 24% or 32% of caloric intake from protein and one healthy control group (n = 8) fed a 16% protein diet, considered as a standard diet. Chemotherapy included two cycles, 1 week apart, each consisting of an injection of CPT-11 (50 mg/kg) followed by 5-fluorouracil (50 mg/kg) the day after. Food intake, body weight, and tumour size were measured daily. On day 9, the rats were euthanized and organs were weighed. Body composition was determined and protein content and protein synthesis (SUnSET method) were measured in the muscle, liver, intestine, and tumour. Immune function was explored by flow cytometry. RESULTS: Cancer and chemotherapy led to a decrease in body weight characterized by a decrease of both fat mass (-56 ± 3%, P < 0.05) and fat-free mass (-8 ± 1%, P < 0.05). Surprisingly, there was no effect of protein diet on body composition, muscle or tumour parameters (weight, protein content, or protein synthesis) but a high cumulative protein intake was positively associated with a high relative body weight and high fat-free mass. The immune system was impacted by cancer and chemotherapy but not by the different amount of protein intake. CONCLUSIONS: Using a realistic model of cancer and chemotherapy, we demonstrated for the first time that protein intake did not positively or negatively modulate tumour growth. Moreover, our results suggested that a high cumulative protein intake was able to improve moderately nutritional status in chemotherapy treated cancer rodents. Although this work cannot be evaluated clinically for ethical reasons, it nevertheless brings an essential contribution to nutrition management for cancer patients.

3.
FEBS Open Bio ; 13(7): 1291-1308, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36416440

RESUMEN

Lowered availability of oxygen in the micro-environment of cells perturbs metabolic and signaling pathways. It affects proliferation, tissue morphology, and differentiation. Leukemia impairs maturation of hematopoietic progenitors: the immune system, healing, and erythropoiesis are weakened, thereby perturbing iron homeostasis and further lowering oxygen provision to tissues. Here, the time-dependent molecular consequences of sudden hypoxia were studied in the KG1a model of immature hematopoietic progenitors. The oxygen tension of KG1a cells was abruptly lowered from the experimentally usual ca. 20 to 1%. Growth and key hubs of signaling, metabolism, and iron homeostasis were monitored by a combination of immunological methods and functional assays. The collapse of oxygen availability stopped proliferation after one generation. The number of cells then remained approximately constant over several days, including after anaerobic changes in the culture medium. Lowered oxygen resulted in transient increase of the hypoxia-inducible factor 1α and of its REDD1 target, inhibition of mechanistic (or mammalian) target of rapamycin, decreased autophagy, altered cap-dependent translation, and minimal repression of the already weak oxidative phosphorylation. These adjustments did not trigger important cellular iron fluxes since the cells relied on their internal iron stores to survive. In conclusion, the response of the KG1a cells to stringent hypoxia is varied, with some established hypoxia-sensitive pathways exhibiting activation whereas others were unaffected. The results draw attention to the flexibility of the environmental adaptation of cancer cells. They suggest that thorough characterization of early leukemic blasts is warranted to propose informed treatments to patients.


Asunto(s)
Hierro , Transducción de Señal , Animales , Humanos , Transducción de Señal/fisiología , Hierro/metabolismo , Hipoxia , Oxígeno , Homeostasis , Mamíferos
4.
J Pineal Res ; 73(3): e12824, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35986493

RESUMEN

The oncostatic effects of melatonin correlate with increased reactive oxygen species (ROS) levels, but how melatonin induces this ROS generation is unknown. In the present study, we aimed to elucidate the two seemingly opposing actions of melatonin regarding its relationship with free radicals. We analyzed the effects of melatonin on head and neck squamous cell carcinoma cell lines (Cal-27 and SCC-9), which were treated with 0.5 or 1 mM melatonin. We further examined the potential effects of melatonin to induce ROS and apoptosis in Cal-27 xenograft mice. Here we report that melatonin mediates apoptosis in head and neck cancer by driving mitochondrial reverse electron transport (RET) to induce ROS production. Melatonin-induced changes in tumoral metabolism led to increased mitochondrial activity, which, in turn, induced ROS-dependent mitochondrial uncoupling. Interestingly, mitochondrial complex inhibitors, including rotenone, abolished the ROS elevation indicating that melatonin increased ROS generation via RET. Melatonin also increased membrane potential and CoQ10 H2 /CoQ10 ratio to elevate mitochondrial ROS production, which are essential conditions for RET. We found that genetic manipulation of cancer cells with alternative oxidase, which transfers electrons from QH2 to oxygen, inhibited melatonin-induced ROS generation, and apoptosis. RET restored the melatonin-induced oncostatic effect, highlighting the importance of RET as the site of ROS production. These results illustrate that RET and ROS production are crucial factors in melatonin's effects in cancer cells and establish the dual effect of melatonin in protecting normal cells and inducing apoptosis in cancer cells.


Asunto(s)
Neoplasias de Cabeza y Cuello , Melatonina , Animales , Apoptosis , Transporte de Electrón , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Melatonina/farmacología , Ratones , Especies Reactivas de Oxígeno/metabolismo
5.
Front Cell Dev Biol ; 9: 731015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733845

RESUMEN

AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. Loss of AMPK resulted in multiple alterations of cardiac mitochondria: reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.

6.
BMC Biol ; 19(1): 228, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674701

RESUMEN

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Asunto(s)
Neoplasias , Nucleósido-Difosfato Quinasa , Animales , Membranas Intracelulares , Ratones , Mitocondrias , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleósido Difosfato Quinasa D/metabolismo , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo
7.
J Trace Elem Med Biol ; 68: 126834, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34385036

RESUMEN

BACKGROUND: Cadmium is an inescapable environmental pollutant that permeates the food chain and has been debatably associated with diabetes in humans. PURPOSE AND PROCEDURES: To probe the specific impact of low-level cadmium exposure on insulin production, largely sub-cytotoxic (50-500 nM) concentrations of cadmium chloride challenged the INS-1 and MIN6 rodent models of pancreatic ß-cells for the longest possible time, up to 4 days, before sub-culturing. MAIN FINDINGS: The concentration of detectable oxidants, the pattern of the actin cytoskeleton, the translocation of ß-catenin, the activity of protein phosphatases, calcium traffic, and the phosphorylation status of several key signaling nodes, such as AMP kinase and mitogen activated kinases including nuclear translocation of Extracellular signal-Regulated Kinase, were all insensitive to the applied very low cadmium doses. Accordingly, low-level cadmium exposure did not alter the insulin secretion ability, the functional hallmark of ß-cells, before the onset of cell death. CONCLUSIONS: These data define an operational toxicological threshold for these cellular models of ß-cells that should be useful to address insulin secretion and the diabetogenic effects of chronic low-level cadmium exposure in animal models and in humans.


Asunto(s)
Cadmio , Insulina , Animales , Cadmio/toxicidad , Muerte Celular , Glucosa , Insulina/metabolismo , Secreción de Insulina , Vías Secretoras
8.
Endocrinol Diabetes Metab ; 4(2): e00211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33855213

RESUMEN

Aims: To understand the mechanism by which imeglimin (a new oral hypoglycemic agent whose phase 3 development program in Japan has now been completed) decreases hepatic glucose production. Materials and methods: We compared the effect of imeglimin and metformin on glucose production, ATP/ADP ratio, oxygen consumption rate, mitochondrial redox potential and membrane potential in primary rat hepatocytes. Results: We found that both imeglimin and metformin dose-dependently decreased glucose production and the ATP/ADP ratio. Moreover, they both increased mitochondrial redox potential (assessed by mitochondrial NAD(P)H fluorescence) and decreased membrane potential (assessed by TMRM fluorescence). However, contrary to metformin, which inhibits mitochondrial Complex I, imeglimin did not decrease the oxygen consumption rate in intact cells. By measuring the oxygen consumption of in situ respiratory chain as a function of the concentration of NADH, we observed that imeglimin decreased the affinity of NADH for the respiratory chain but did not affect its Vmax (ie competitive inhibition) whereas metformin decreased both the Vmax and the affinity (ie uncompetitive inhibition). Conclusions: We conclude that imeglimin induces a kinetic constraint on the respiratory chain that does not affect its maximal activity. This kinetic constraint is offset by a decrease in the mitochondrial membrane potential, which induces a thermodynamic constraint on the ATPase responsible for a decrease in the ATP/ADP ratio.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Hepatocitos/metabolismo , Hipoglucemiantes/farmacología , Triazinas/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metformina/farmacología , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas Wistar
9.
Biochem Biophys Res Commun ; 528(4): 650-657, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32513541

RESUMEN

INTRODUCTION: The extension of islet transplantation to a wider number of type 1 diabetes patients is compromised by severe adverse events related to the immunosuppressant therapy required for allogenic islet transplantation. In this context, microencapsulation offers the prospects of immunosuppressive-free therapy by physically isolating islets from the immune system. However, current biomaterials need to be optimized to: improve biocompatibility, guaranty the maintenance of graft viability and functionality, and prevent fibrosis overgrowth around the capsule in vivo. Accumulating evidence suggest that mesenchymal stem cells (MSCs) and anchor points consisting of tripeptides arg-gly-asp (RGD) have cytoprotective effects on pancreatic islets. Here, we investigated the effect of supplementing reference M-rich alginate microcapsules with MSCs and RGD-G rich alginate on bioprocessing as well as on human pancreatic islets viability and functionality. METHODS: We characterized the microcapsules components, and then for the new microcapsule composite product: we analyzed the empty capsules biocompatibility and then investigated the benefits of MSCs and RGD-G rich alginate on viability and functionality on the encapsulated human pancreatic islets in vitro. We performed viability tests by confocal microscopy and glucose stimulated insulin secretion (GSIS) test in vitro to assess the functionality of naked and encapsulated islets. RESULTS: Encapsulation in reference M-rich alginate capsules induced a reduction in viability and functionality compared to naked islets. This side-effect of encapsulation was in part counteracted by the presence of MSCs but the restoration was complete with the combination of both MSCs and the RGD-G rich alginate. CONCLUSIONS: The present findings show that bioprocessing a favorable composite environment inside the M-rich alginate capsule with both MSCs and RGD-G rich alginate improves human islets survival and functionality in vitro.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Células Inmovilizadas/citología , Islotes Pancreáticos/citología , Células Madre Mesenquimatosas/citología , Oligopéptidos/farmacología , Adulto , Alginatos/química , Células Cultivadas , Células Inmovilizadas/efectos de los fármacos , Humanos , Islotes Pancreáticos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad
10.
Cells ; 8(11)2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731523

RESUMEN

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Asunto(s)
Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Membranas Mitocondriales/metabolismo , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III , Cultivo Primario de Células , Ratas , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Wortmanina/metabolismo
11.
Stem Cell Res Ther ; 10(1): 85, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867050

RESUMEN

BACKGROUND: Islets of Langerhans transplantation is a promising therapy for type 1 diabetes mellitus, but this technique is compromised by transplantation stresses including inflammation. In other tissues, co-transplantation with mesenchymal stem cells has been shown to reduce damage by improving anti-inflammatory and anti-oxidant defences. Therefore, we probed the protection afforded by bone marrow mesenchymal stem cells to islets under pro-inflammatory cytokine stress. METHODS: In order to evaluate the cytoprotective potential of mesenchymal stem cells on rat islets, co-cultures were exposed to the interleukin-1, tumour necrosis factor α and interferon γ cocktail for 24 h. Islet viability and functionality tests were performed. Reactive oxygen species and malondialdehyde were measured. Expression of stress-inducible genes acting as anti-oxidants and detoxifiers, such as superoxide dismutases 1 and 2, NAD(P)H quinone oxidoreductase 1, heme oxygenase-1 and ferritin H, was compared to non-stressed cells, and the corresponding proteins were measured. Data were analysed by a two-way ANOVA followed by a Holm-Sidak post hoc analysis. RESULTS: Exposure of rat islets to cytokines induces a reduction in islet viability and functionality concomitant with an oxidative status shift with an increase of cytosolic ROS production. Mesenchymal stem cells did not significantly increase rat islet viability under exposure to cytokines but protected islets from the loss of insulin secretion. A drastic reduction of the antioxidant factors heme oxygenase-1 and ferritin H protein levels was observed in islets exposed to the cytokine cocktail with a prevention of this effect by the presence of mesenchymal stem cells. CONCLUSIONS: Our data evidenced that MSCs are able to preserve islet insulin secretion through a modulation of the oxidative imbalance mediated by heme and iron via heme oxygenase-1 and ferritin in a context of cytokine exposure.


Asunto(s)
Citocinas/farmacología , Ferritinas/biosíntesis , Hemo Oxigenasa (Desciclizante)/biosíntesis , Islotes Pancreáticos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Técnicas de Cocultivo , Humanos , Islotes Pancreáticos/citología , Células Madre Mesenquimatosas/citología , Ratas
12.
Nat Commun ; 10(1): 1038, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833561

RESUMEN

AMP-activated protein kinase AMPK senses and regulates cellular energy state. AMPK activation by increasing AMP and ADP concentrations involves a conformational switch within the heterotrimeric complex. This is exploited here for the construction of a synthetic sensor of cellular energetics and allosteric AMPK activation, AMPfret. Based on engineered AMPK fused to fluorescent proteins, the sensor allows direct, real-time readout of the AMPK conformational state by fluorescence resonance energy transfer (FRET). AMPfret faithfully and dynamically reports the binding of AMP and ADP to AMPK γ-CBS sites, competed by Mg2+-free ATP. FRET signals correlate with activation of AMPK by allosteric mechanisms and protection from dephosphorylation, attributed here to specific CBS sites, but does not require activation loop phosphorylation. Moreover, AMPfret detects binding of pharmacological compounds to the AMPK α/ß-ADaM site enabling activator screening. Cellular assays demonstrate that AMPfret is applicable in vivo for spatiotemporal analysis of energy state and allosteric AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Adenosina Difosfato/química , Adenosina Monofosfato/química , Ingeniería de Proteínas , Células 3T3 , Proteínas Quinasas Activadas por AMP/genética , Adenosina Trifosfato , Regulación Alostérica , Animales , Sitios de Unión , Activación Enzimática , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Cinética , Proteínas Luminiscentes , Ratones , Modelos Moleculares , Fosforilación , Ratas
13.
Artículo en Inglés | MEDLINE | ID: mdl-29887835

RESUMEN

Co-encapsulation of pancreatic islets with mesenchymal stem cells in a three-dimensional biomaterial's structure is a promising technique to improve transplantation efficacy and to decrease immunosuppressant therapy. Currently, evaluation of graft quality after co-encapsulation is only based on insulin secretion. Viability measurement in a 3D conformation structure involving two different cell types is complex, mainly performed manually, highly time consuming and examiner dependent. Standardization of encapsulated graft viability analysis before transplantation is a key point for the translation of the method from the bench side to clinical practice. In this study, we developed an automated analysis of islet viability based on confocal pictures processing of cells stained with three probes (Hoechst, propidium iodide, and PKH67). When compared with results obtained manually by different examiners, viability results show a high degree of similarity (under 3% of difference) and a tight correlation (r = 0.894; p < 0.001) between these two techniques. The automated technique offers the advantage of reducing the analysis time by 6 and avoids the examiner's dependent variability factor. Thus, we developed a new efficient tool to standardize the analysis of islet viability in 3D structure involving several cell types, which is a key element for encapsulated graft analysis in clinical practice.

14.
Toxics ; 6(2)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565305

RESUMEN

The impact of chronic cadmium exposure and slow accumulation on the occurrence and development of diabetes is controversial for human populations. Islets of Langerhans play a prominent role in the etiology of the disease, including by their ability to secrete insulin. Conversion of glucose increase into insulin secretion involves mitochondria. A rat model of pancreatic ß-cells was exposed to largely sub-lethal levels of cadmium cations applied for the longest possible time. Cadmium entered cells at concentrations far below those inducing cell death and accumulated by factors reaching several hundred folds the basal level. The mitochondria reorganized in response to the challenge by favoring fission as measured by increased circularity at cadmium levels already ten-fold below the median lethal dose. However, the energy charge and respiratory flux devoted to adenosine triphosphate synthesis were only affected at the onset of cellular death. The present data indicate that mitochondria participate in the adaptation of ß-cells to even a moderate cadmium burden without losing functionality, but their impairment in the long run may contribute to cellular dysfunction, when viability and ß-cells mass are affected as observed in diabetes.

15.
Neurochem Int ; 109: 34-40, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28434975

RESUMEN

Cocaine abuse induces brain injury and neurodegeneration by a mechanism that has not yet been fully elucidated. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). In this work, we examined the involvement of the PTP in cocaine-induced toxicity in PC12 cell lines. We used two different PTP inhibitors -i.e. cyclosporin A (CsA) and metformin-to assess their ability to counteract the cocaine induced effects. We first observed that a 48 h exposure to cocaine strongly sensitized cells to calcium overload, as measured by the calcium retention capacity. CsA and metformin significantly decreased the cocaine-induced PTP opening sensitization. We next showed by confocal microscopy that cocaine induced a permanent PTP opening in intact living cells, a phenomenon characterized by the collapse of the mitochondrial membrane potential and the relocation of the NAD(P)H from the mitochondrial matrix to the cytosol. As expected, a cocaine-induced PTP opening was prevented by PTP inhibitors. Finally, a flow cytometry analysis revealed that cocaine induced cell death while CsA and metformin promoted cell survival. Our results demonstrate that cocaine induces PC12 cell death through a mechanism involving permanent PTP opening.


Asunto(s)
Cocaína/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Células PC12 , Ratas
17.
Exp Suppl ; 107: 491-523, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812993

RESUMEN

Maintenance of energy homeostasis is a basic requirement for cell survival. Different mechanisms have evolved to cope with spatial and temporal mismatch between energy-providing and -consuming processes. Among these, signaling by AMP-activated protein kinase (AMPK) is one of the key players, regulated by and itself regulating cellular adenylate levels. Further understanding its complex cellular function requires deeper insight into its activation patterns in space and time at a single cell level. This may become possible with an increasing number of genetically encoded fluorescent biosensors, mostly based on fluorescence resonance energy transfer, which have been engineered to monitor metabolic parameters and kinase activities. Here, we review basic principles of biosensor design and function and the advantages and limitations of their use and provide an overview on existing FRET biosensors to monitor AMPK activation, ATP concentration, and ATP/ADP ratios, together with other key metabolites and parameters of energy metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Proteínas Luminiscentes/genética , Transducción de Señal/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Metabolismo Energético , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Proteínas Luminiscentes/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Biochim Biophys Acta ; 1857(6): 643-52, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26968895

RESUMEN

Resveratrol is attracting much interest because of its potential to decrease body weight and increase life span, influencing liver and muscle function by increasing mitochondrial mass and energy expenditure. Even though resveratrol was already shown to reduce the adipose tissue mass in animal models, its effects on mitochondrial mass and network structure in adipocytes have not yet been studied. For this purpose, we investigated the effect of resveratrol on mitochondrial mass increase and remodeling during adipogenic differentiation of two in vitro models of adipocyte biology, the murine 3T3-L1 cell line and the human SGBS cell strain. We confirm that resveratrol inhibits lipogenesis in differentiating adipocytes, both mouse and human. We further show that this is linked to inhibition of the normally observed mitochondrial mass increase and mitochondrial remodeling. At the molecular level, the anti-lipogenic effect of resveratrol seems to be mediated by a blunted expression increase and an inhibition of acetyl-CoA carboxylase (ACC). This is one of the consequences of an inhibited insulin-induced signaling via Akt, and maintained signaling via AMP-activated protein kinase. The anti-lipogenic effect of resveratrol is further modulated by expression levels of mitochondrial ATAD3, consistent with the emerging role of this protein as an important regulator of mitochondrial biogenesis and lipogenesis. Our data suggest that resveratrol acts on differentiating preadipocytes by inhibiting insulin signaling, mitochondrial biogenesis, and lipogenesis, and that resveratrol-induced reduction of mitochondrial biogenesis and lipid storage contribute to adipose tissue weight loss in animals and humans.


Asunto(s)
Adipocitos/efectos de los fármacos , Insulina/metabolismo , Lipogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estilbenos/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Antioxidantes/farmacología , Western Blotting , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol , Transducción de Señal/efectos de los fármacos
19.
Physiol Rep ; 4(3)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26847727

RESUMEN

The aim of this study was to characterize the early alterations of the liver mitochondrial function in ZDF (fa/fa) rats that develop diabetes compared to that of their lean counterparts ZDF (fa/+). Liver mitochondrial function was examined in 11- and 14-week-old ZDF (fa/fa) and ZDF lean (fa/+) rats. Oxygen consumption, H2O2 release, calcium retention capacity (CRC), membrane potential, membrane fluidity, and fatty acid composition were analyzed. State 3 oxygen consumption with palmitoyl-carnitine increases between 11 and 14 weeks of age in lean but not in diabetic animals. This response was not seen with other substrates, suggesting that the use of fatty acids is impaired in diabetic rats. H2O2 release was lower in 14-week-old ZDF (fa/fa) rats as compared to ZDF lean (fa/+). These changes were not associated with differences in enzymatic activities of the respiratory complexes, suggesting regulatory mechanisms independent of their expression levels. Membrane fluidity and composition analyses show only slight effects linked to diabetes progression. The most salient feature was a reduction in CRC in the presence of CsA, an effect reflecting PTP dysregulation. Our data suggest few changes of mitochondrial function in ZDF fa/fa rats. At the age of 11 weeks, liver mitochondria have mainly a reduced effect of CsA on CRC.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Animales , Western Blotting , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Espectroscopía de Resonancia por Spin del Electrón , Citometría de Flujo , Hígado/patología , Espectroscopía de Resonancia Magnética , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/patología , Estrés Oxidativo/fisiología , Consumo de Oxígeno/fisiología , Ratas , Especies Reactivas de Oxígeno/metabolismo
20.
Biochim Biophys Acta ; 1847(6-7): 629-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25868875

RESUMEN

Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success.


Asunto(s)
Apoptosis/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Oxígeno/farmacología , Acetilcisteína/farmacología , Animales , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Citometría de Flujo , Depuradores de Radicales Libres/farmacología , Humanos , Hipoglucemiantes/farmacología , Hipoxia , Islotes Pancreáticos/patología , Metformina/farmacología , Microscopía Confocal , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...