Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
One Health Outlook ; 3(1): 11, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990224

RESUMEN

In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development's (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security.

2.
PLoS One ; 15(9): e0238832, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970701

RESUMEN

Monitoring of cyanobacteria in freshwater ecosystems is a complex task, which is time consuming and expensive due to the chaotic population dynamics and highly heterogeneous distribution of cyanobacteria populations in water bodies. The financial cost constitutes a strong limitation for the implementation of long-term monitoring programs in developing countries, particularly in Africa. The work presented here was performed in the framework of an international project addressing the sustainable monitoring and management of surface water resources used for the production of drinking water in three African countries. We tested the potential of a citizen approach for monitoring cyanobacterial blooms, which are a growing threat to the drinking water supply. This pilot study was designed, implemented and evaluated in close interaction with the Pasteur Institute of the Ivory Coast and with the populations of three villages located on the shoreline of a freshwater lagoon located near Abidjan city. Based on the use of a smartphone application, the citizens of the three villages were invited to report water color changes, as these changes could reflect cyanobacteria proliferations. A two-year experimentation period has shown that it is possible to mobilize the local populations to monitor cyanobacterial blooms. The data collected by citizens were consistent with the data obtained by a classical monitoring of cyanobacteria performed over seven months, but it appeared that new approaches were needed to validate the citizen data. This participatory approach also provided great improvements to the understanding and awareness of local populations regarding water quality and cyanobacterial bloom issues. Finally, we discuss some of the difficulties and limitations of our participatory monitoring approach that should be considered by further implementations. Despite these difficulties, our work suggests that citizen monitoring is a promising approach that may complement the classical approach to sustainable monitoring of cyanobacteria in developing countries.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Lagos/microbiología , Côte d'Ivoire , Países en Desarrollo , Proyectos Piloto , Calidad del Agua/normas , Abastecimiento de Agua/normas
3.
Pathog Glob Health ; 113(6): 282-287, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818238

RESUMEN

Infections caused by non-typhoidal Salmonella (NTS) are common around the world, with high morbidity and mortality rates recorded annually. Salmonella serovars harbor plasmids of various sizes which may play roles in antibiotic resistance and virulence. The aim of this study was to profile and determine the role of plasmids in ciprofloxacin resistance and virulence of Salmonella serovars. Using alkaline lysis method 25 NTS serovars from food animals and humans were assayed for plasmids. Isolates ability to resist healthy human serum, bind congo red, produce hemolysin and susceptibility to ciprofloxacin before and after plasmid curing were evaluated. Mobility of plasmids was determined by conjugation. Fifteen (60%) of the 25 Salmonella serovars harbored plasmids with sizes ranging from 0.4 to 38.4 kb. S. Budapest serovars harbored 5-9 plasmids, while S. Essen and S. Mura had six plasmids each. S. Chomedey and a S. Budapest serovar were sensitive to ciprofloxacin after plasmid curing while other serovars remained resistant to ciprofloxacin after plasmid curing. All Salmonella isolates had the ability to withstand human serum before and after plasmid curing, however, some serovars lost their ability to bind congo red after plasmid curing. All Salmonella isolates that initially displayed hemolysin activity retained their ability after curing. Thirteen (86.7%) of the 15 serovars that harbored plasmids conjugatively transferred their plasmids to E. coli K-12 (DH5α). Having Salmonella serovars that harbor transferrable plasmids in the food chain can drive antibiotic resistance and enhanced virulence of otherwise less virulence strains.


Asunto(s)
Plásmidos/genética , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Animales , Antibacterianos/farmacología , Bovinos/microbiología , Pollos/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Nigeria , Plásmidos/metabolismo , Salmonella enterica/clasificación , Salmonella enterica/aislamiento & purificación , Ovinos/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...