Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neuroimage ; 279: 120336, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597590

RESUMEN

Group level analyses of functional regions involved in voice perception show evidence of 3 sets of bilateral voice-sensitive activations in the human prefrontal cortex, named the anterior, middle and posterior Frontal Voice Areas (FVAs). However, the relationship with the underlying sulcal anatomy, highly variable in this region, is still unknown. We examined the inter-individual variability of the FVAs in conjunction with the sulcal anatomy. To do so, anatomical and functional MRI scans from 74 subjects were analyzed to generate individual contrast maps of the FVAs and relate them to each subject's manually labeled prefrontal sulci. We report two major results. First, the frontal activations for the voice are significantly associated with the sulcal anatomy. Second, this correspondence with the sulcal anatomy at the individual level is a better predictor than coordinates in the MNI space. These findings offer new perspectives for the understanding of anatomical-functional correspondences in this complex cortical region. They also shed light on the importance of considering individual-specific variations in subject's anatomy.


Asunto(s)
Neocórtex , Voz , Humanos , Corteza Prefrontal/diagnóstico por imagen
2.
Neuroimage ; 265: 119776, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460275

RESUMEN

The surface of the cerebral cortex is very convoluted, with a large number of folds, the cortical sulci. These folds are extremely variable from one individual to another, and this large variability is a problem for many applications in neuroscience and brain imaging. In particular, sulcal geometry (shape) and sulcal topology (branches, number of pieces) are very variable. "Plis de passages" (PPs) or "annectant gyri" can explain part of the topological variability, namely why sulci have a variable number of pieces across subjects. The concept of PPs was first introduced by Gratiolet (1854) to describe transverse gyri that interconnect both sides of a sulcus, that are frequently buried in the depth of sulci, and that are sometimes apparent on the cortical surface, hence seemingly interrupting the course of sulci and separating them in several pieces. Nevertheless, the difficulty of identifying PPs and the lack of systematic methods to automatically detect them has limited their use. However, based on a recent characterization of PPs in the superior temporal sulcus, we present here a method to automatically detect PPs in the superior temporal sulcus. Local morphology within the sulcus is characterized using cortical surface profiling, and the three-dimensional PP recognition problem is performed as a two-dimensional image classification problem with class-imbalance. This is solved by using an ensemble support vector machine model (EnsSVM) with a rebalancing strategy. Cross validation and quantitative experimental results on an external dataset show the effectiveness and robustness of our approach.


Asunto(s)
Corteza Auditiva , Lóbulo Temporal , Humanos , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Lóbulo Occipital , Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
4.
Front Neuroinform ; 16: 803934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311005

RESUMEN

Brain mapping studies often need to identify brain structures or functional circuits into a set of individual brains. To this end, multiple atlases have been published to represent such structures based on different modalities, subject sets, and techniques. The mainstream approach to exploit these atlases consists in spatially deforming each individual data onto a given atlas using dense deformation fields, which supposes the existence of a continuous mapping between atlases and individuals. However, this continuity is not always verified, and this "iconic" approach has limits. We present in this study an alternative, complementary, "structural" approach, which consists in extracting structures from the individual data, and comparing them without deformation. A "structural atlas" is thus a collection of annotated individual data with a common structure nomenclature. It may be used to characterize structure shape variability across individuals or species, or to train machine learning systems. This study exhibits Anatomist, a powerful structural 3D visualization software dedicated to building, exploring, and editing structural atlases involving a large number of subjects. It has been developed primarily to decipher the cortical folding variability; cortical sulci vary enormously in both size and shape, and some may be missing or have various topologies, which makes iconic approaches inefficient to study them. We, therefore, had to build structural atlases for cortical sulci, and use them to train sulci identification algorithms. Anatomist can display multiple subject data in multiple views, supports all kinds of neuroimaging data, including compound structural object graphs, handles arbitrary coordinate transformation chains between data, and has multiple display features. It is designed as a programming library in both C++ and Python languages, and may be extended or used to build dedicated custom applications. Its generic design makes all the display and structural aspects used to explore the variability of the cortical folding pattern work in other applications, for instance, to browse axonal fiber bundles, deep nuclei, functional activations, or other kinds of cortical parcellations. Multimodal, multi-individual, or inter-species display is supported, and adaptations to large scale screen walls have been developed. These very original features make it a unique viewer for structural atlas browsing.

5.
Elife ; 112022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108197

RESUMEN

Manual gestures and speech recruit a common neural network, involving Broca's area in the left hemisphere. Such speech-gesture integration gave rise to theories on the critical role of manual gesturing in the origin of language. Within this evolutionary framework, research on gestural communication in our closer primate relatives has received renewed attention for investigating its potential language-like features. Here, using in vivo anatomical MRI in 50 baboons, we found that communicative gesturing is related to Broca homologue's marker in monkeys, namely the ventral portion of the Inferior Arcuate sulcus (IA sulcus). In fact, both direction and degree of gestural communication's handedness - but not handedness for object manipulation are associated and correlated with contralateral depth asymmetry at this exact IA sulcus portion. In other words, baboons that prefer to communicate with their right hand have a deeper left-than-right IA sulcus, than those preferring to communicate with their left hand and vice versa. Interestingly, in contrast to handedness for object manipulation, gestural communication's lateralisation is not associated to the Central sulcus depth asymmetry, suggesting a double dissociation of handedness' types between manipulative action and gestural communication. It is thus not excluded that this specific gestural lateralisation signature within the baboons' frontal cortex might reflect a phylogenetical continuity with language-related Broca lateralisation in humans.


Asunto(s)
Comunicación Animal , Área de Broca/fisiología , Lateralidad Funcional/fisiología , Gestos , Papio anubis/fisiología , Animales , Femenino , Humanos , Lenguaje , Masculino
6.
Ann Phys Rehabil Med ; 65(6): 101599, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34718191

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) lesions are known to evolve over time, but the duration and consequences of cerebral remodelling are unclear. Degenerative mechanisms occurring in the chronic phase after TBI could constitute "tertiary" lesions related to the neurological outcome. OBJECTIVE: The objective of this prospective study of severe TBI was to longitudinally evaluate the volume of white and grey matter structures and white matter integrity with 2 time-point multimodal MRI. METHODS: Longitudinal MRI follow-up was obtained for 11 healthy controls (HCs) and 22 individuals with TBI (mean [SD] 60 [15] months after injury) along with neuropsychological assessments. TBI individuals were classified in the "favourable" recovery group (Glasgow Outcome Scale Extended [GOSE] 6-8) and "unfavourable" recovery group (GOSE 3-5) at 5 years. Variation in brain volumes (3D T1-weighted image) and white matter integrity (diffusion tensor imaging [DTI]) were quantitatively assessed over time and used to predict neurological outcome. RESULTS: TBI individuals showed a marked decrease in volumes of whole white matter (median -11.4% [interquartile range -5.8; -14.6]; p < 0.001) and deep grey nuclear structures (-17.1% [-10.6; -20.5]; p < 0.001). HCs did not show any significant change over the same time period. Median volumetric loss in several brain regions was higher with GOSE 3-5 than 6-8. These lesions were associated with lower fractional anisotropy and higher mean diffusivity at baseline. Volumetric variations were positively correlated with normalized fractional anisotropy and negatively with normalized mean diffusivity at baseline and follow-up. A computed predictive model with baseline DTI showed good accuracy to predict neurological outcome (area under the receiver operating characteristic curve 0.82 [95% confidence interval 0.81-0.83]) CONCLUSIONS: We characterised the striking atrophy of deep brain structures after severe TBI. DTI imaging in the subacute phase can predict the occurrence and localization of these tertiary lesions as well as long-term neurological outcome. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00577954. Registered on October 2006.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen de Difusión Tensora , Humanos , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Estudios de Seguimiento , Imagen por Resonancia Magnética , Estudios Prospectivos , Estudios de Casos y Controles
7.
Neurosci Biobehav Rev ; 134: 104490, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34914937

RESUMEN

The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this more continuous AF evolution across primates.


Asunto(s)
Lenguaje , Sustancia Blanca , Animales , Mapeo Encefálico/métodos , Red Nerviosa , Vías Nerviosas/anatomía & histología
8.
Brain Struct Funct ; 226(6): 1841-1853, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34043074

RESUMEN

The human brain grows rapidly in early childhood, reaching 95% of its final volume by age 6. Understanding brain growth in childhood is important both to answer neuroscience questions about anatomical changes in development, and as a comparison metric for neurological disorders. Metrics for neuroanatomical development including cortical measures pertaining to the sulci can be instrumental in early diagnosis, monitoring, and intervention for neurological diseases. In this paper, we examine the development of the central sulcus in children aged 12-60 months from structural magnetic resonance images. The central sulcus is one of the earliest sulci to develop at the fetal stage and is implicated in diseases such as Attention Deficit Hyperactive Disorder and Williams syndrome. We investigate the relationship between the changes in the depth of the central sulcus with respect to age. In our results, we observed a pattern of depth present early on, that had been previously observed in adults. Results also reveal the presence of a rightward depth asymmetry at 12 months of age at a location related to orofacial movements. That asymmetry disappears gradually, mostly between 12 and 24 months, and we suggest that it is related to the development of language skills.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Preescolar , Humanos , Neuroanatomía
9.
Brain Struct Funct ; 226(1): 179-193, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33245395

RESUMEN

The central sulcus is probably one of the most studied folds in the human brain, owing to its clear relationship with primary sensory-motor functional areas. However, due to the difficulty of estimating the trajectories of the U-shape fibres from diffusion MRI, the short structural connectivity of this sulcus remains relatively unknown. In this context, we studied the spatial organization of these U-shape fibres along the central sulcus. Based on high quality diffusion MRI data of 100 right-handed subjects and state-of-the-art pre-processing pipeline, we first define a connectivity space that provides a comprehensive and continuous description of the short-range anatomical connectivity around the central sulcus at both the individual and group levels. We then infer the presence of five major U-shape fibre bundles at the group level in both hemispheres by applying unsupervised clustering in the connectivity space. We propose a quantitative investigation of their position and number of streamlines as a function of hemisphere, sex and functional scores such as handedness and manual dexterity. Main findings of this study are twofold: a description of U-shape short-range connectivity along the central sulcus at group level and the evidence of a significant relationship between the position of three hand related U-shape fibre bundles and the handedness score of subjects.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Modelos Neurológicos , Red Nerviosa/diagnóstico por imagen , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Neuroimagen , Adulto Joven
10.
IEEE Trans Image Process ; 30: 1453-1460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33326381

RESUMEN

The recent definition of fractional Brownian motions on surfaces has raised the statistical issue of estimating the Hurst index characterizing these models. To deal with this open issue, we propose a method which is based on a spectral representation of surfaces built upon their Laplace-Beltrami operator. This method includes a first step where the surface supporting the motion is recovered using a mean curvature flow, and a second one where the Hurst index is estimated by linear regression on the motion spectrum. The method is evaluated on synthetic surfaces. The interest of the method is further illustrated on some fetal cortical surfaces extracted from magnetic resonance images as a means to quantify the brain complexity during the gestational age.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Movimiento/fisiología , Propiedades de Superficie , Algoritmos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Feto/diagnóstico por imagen , Humanos , Modelos Lineales , Imagen por Resonancia Magnética
11.
Neuroimage ; 228: 117685, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359344

RESUMEN

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Asunto(s)
Anatomía Comparada/tendencias , Evolución Biológica , Encéfalo/anatomía & histología , Encéfalo/fisiología , Neuroimagen/tendencias , Anatomía Comparada/métodos , Animales , Humanos , Neuroimagen/métodos , Primates
12.
Med Image Anal ; 66: 101749, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32877840

RESUMEN

Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires new numerical tools to establish inter-subject correspondences. Here, we address this issue by taking advantage of the geometrical information carried by sulcal basins that are the local patches of surfaces surrounding each sulcal pit. Our framework consists in two phases. First, we present a new method to generate a population-specific atlas of this sulcal basins organi- zation as a fold-level parcellation of the cortical surface. Then, we address the labeling of individual sulcal pits and corresponding basins with respect to this atlas. To assess their validity, we applied these methodological advances on two different populations of healthy subjects. The first database of 137 adults allowed us to compare our method to the state-of-the-art and the second database of 209 children, aged between 0 and 18 years, illustrates the adaptability and relevance of our method in the context of pediatric data showing strong variations in cortical volume and folding.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Niño , Preescolar , Humanos , Lactante , Recién Nacido
13.
Front Neurosci ; 13: 536, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275091

RESUMEN

Diffusion MR images are prone to severe geometric distortions induced by head movement, eddy-current and inhomogeneity of magnetic susceptibility. Various correction methods have been proposed that depend on the choice of the acquisition settings and potentially provide highly different data quality. However, the impact of this choice has not been evaluated in terms of the ratio between scan time and preprocessed data quality. This study aims at investigating the impact of six well-known preprocessing methods, each associated to specific acquisition settings, on the outcome of diffusion analyses. For this purpose, we developed a comprehensive toolbox called Diffuse which automatically guides the user to the best preprocessing pipeline according to the input data. Using MR images of 20 subjects from the HCP dataset, we compared the six pre-processing pipelines regarding the following criteria: the ability to recover brain's true geometry, the tensor model estimation and derived indices in the white matter, and finally the spatial dispersion of six well known connectivity pathways. As expected the pipeline associated to the longer acquisition fully repeated with reversed phase-encoding (RPE) yielded the higher data quality and was used as a reference to evaluate the other pipelines. In this way, we highlighted several significant aspects of other pre-processing pipelines. Our results first established that eddy-current correction improves the tensor-fitting performance with a localized impact especially in the corpus callosum. Concerning susceptibility distortions, we showed that the use of a field map is not sufficient and involves additional smoothing, yielding to an artificial decrease of tensor-fitting error. Of most importance, our findings demonstrate that, for an equivalent scan time, the acquisition of a b0 volume with RPE ensures a better brain's geometry reconstruction and local improvement of tensor quality, without any smoothing of the image. This was found to be the best scan time/data quality compromise. To conclude, this study highlights and attempts to quantify the strong dependence of diffusion metrics on acquisition settings and preprocessing methods.

14.
Cortex ; 118: 203-211, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30738569

RESUMEN

Handedness, one of the most prominent expressions of laterality, has been historically considered unique to human. This noteworthy feature relates to contralateral inter-hemispheric asymmetries in the motor hand area following the mid-portion of the central sulcus. However, within an evolutionary approach, it remains debatable whether hand preferences in nonhuman primates are associated with similar patterns of hemispheric specialization. In the present study conducted in Old world monkeys, we investigate anatomical asymmetries of the central sulcus in a sample of 86 olive baboons (Papio anubis) from in vivo T1 anatomical magnetic resonance images (MRI). Out of this sample, 35 individuals were classified as right-handed and 28 as left-handed according to their hand use responses elicited by a bimanual coordinated tube task. Here we report that the direction and degree of hand preference (left or right), as measured by this manual task, relates to and correlates with contralateral hemispheric sulcus depth asymmetry, within a mid-portion of the central sulcus. This neuroanatomical manifestation of handedness in baboons located in a region, which may correspond to the motor hand area, questions the phylogenetic origins of human handedness that may date back to their common ancestor, 25-40 millions years ago.


Asunto(s)
Lateralidad Funcional/fisiología , Mano/fisiología , Imagen por Resonancia Magnética , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Adulto , Animales , Femenino , Haplorrinos , Humanos , Masculino , Papio anubis , Filogenia
15.
Neuroimage ; 174: 297-307, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29571714

RESUMEN

The asymmetry of the superior temporal sulcus (STS) has been identified as a species-specific feature of the human brain. The so-called superior temporal asymmetrical pit (STAP) area is observed from the last trimester of gestation onwards and is far less pronounced in the chimpanzee brain. This asymmetry is associated with more frequent sulcal interruptions, named plis de passage (PPs), leading to the irregular morphology of the left sulcus. In this paper, we aimed to characterize the variability, asymmetry, and heritability of these interruptions in the STS in comparison with the other main sulci. We developed an automated method to extract PPs across the cortex based on a highly reproducible grid of sulcal pits across individuals, which we applied to a subset of Human Connectome Project (HCP) subjects (N = 820). We report that only a few PPs across the cortex are genetically constrained, namely in the collateral, postcentral and superior temporal sulci and the calcarine fissure. Moreover, some PPs occur more often in one hemisphere than the other, namely in the precentral, postcentral, intraparietal sulci, as well as in both inferior and superior temporal sulci. Most importantly, we found that only the interruptions within the STAP region are both asymmetric and genetically constrained. Because this morphological pattern is located in an area of the left hemisphere related to speech, our results suggest structural constraints on the architecture of the linguistic network.


Asunto(s)
Carácter Cuantitativo Heredable , Lóbulo Temporal/anatomía & histología , Adulto , Conectoma , Femenino , Hispánicos o Latinos/genética , Humanos , Masculino , Linaje , Sustancia Blanca/anatomía & histología , Población Blanca/genética , Adulto Joven
16.
Lancet Neurol ; 17(4): 317-326, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29500154

RESUMEN

BACKGROUND: Prediction of neurological outcome after cardiac arrest is a major challenge. The aim of this study was to assess whether quantitative whole-brain white matter fractional anisotropy (WWM-FA) measured by diffusion tensor imaging between day 7 and day 28 after cardiac arrest can predict long-term neurological outcome. METHODS: This prospective, observational, cohort study (part of the MRI-COMA study) was done in 14 centres in France, Italy, and Belgium. We enrolled patients aged 18 years or older who had been unconscious for at least 7 days after cardiac arrest into the derivation cohort. The following year, we recruited the validation cohort on the same basis. We also recruited a minimum of five healthy volunteers at each centre for the normalisation procedure. WWM-FA values were compared with standard criteria for unfavourable outcome, conventional MRI sequences (fluid-attenuated inversion recovery and diffusion-weighted imaging), and proton magnetic resonance spectroscopy. The primary outcome was the best achieved Glasgow-Pittsburgh Cerebral Performance Categories (CPC) at 6 months, dichotomised as favourable (CPC 1-2) and unfavourable outcome (CPC 3-5). Prognostication performance was assessed by the area under the receiver operating characteristic (ROC) curves and compared between groups. This study was registered with ClinicalTrials.gov, number NCT00577954. FINDINGS: Between Oct 1, 2006, and June 30, 2014, 185 patients were enrolled in the derivation cohort, of whom 150 had an interpretable multimodal MRI and were included in the analysis. 33 (22%) patients had a favourable neurological outcome at 6 months. Prognostic accuracy, as quantified by the area under the ROC curve, was significantly higher with the normalised WWM-FA value (area under the ROC curve 0·95, 95% CI 0·91-0·98) than with the standard criteria for unfavourable outcome or other MRI sequences. In a subsequent validation cohort of 50 patients (enrolled between April 1, 2015, and March 31, 2016), a normalised WWM-FA value lower than 0·91, set from the derivation cohort, had a negative predictive value of 71·4% (95% CI 41·9-91·6) and a positive predictive value of 100% (90·0-100), with 89·7% sensitivity (75·8-97·1) and 100% specificity (69·1-100) for the prediction of unfavourable outcome. INTERPRETATION: In patients who are unconscious 7 days after cardiac arrest, the normalised WWM-FA value, measured by diffusion tensor imaging, could be used to accurately predict neurological outcome at 6 months. This evidence requires confirmation from future large-scale trials with a strict protocol of withdrawal or limitation-of-care decisions and time window for MRI. FUNDING: French Ministry of Health, French National Agency for Research, Italian Ministry of Health, and Regione Lombardia.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Paro Cardíaco/diagnóstico por imagen , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Adulto , Anciano , Bélgica , Encéfalo/fisiopatología , Electroencefalografía , Femenino , Francia , Paro Cardíaco/complicaciones , Paro Cardíaco/fisiopatología , Humanos , Italia , Imagen por Resonancia Magnética , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Sensibilidad y Especificidad , Resultado del Tratamiento
17.
Cereb Cortex ; 28(6): 1922-1933, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444225

RESUMEN

The influence of genes on cortical structures has been assessed through various phenotypes. The sulcal pits, which are the putative first cortical folds, have for long been assumed to be under tight genetic control, but this was never quantified. We estimated the pit depth heritability in various brain regions using the high quality and large sample size of the Human Connectome Project pedigree cohort. Analysis of additive genetic variance indicated that their heritability ranges between 0.2 and 0.5 and displays a regional genetic control with an overall symmetric pattern between hemispheres. However, a noticeable asymmetry of heritability estimates is observed in the superior temporal sulcus and could thus be related to language lateralization. The heritability range estimated in this study reinforces the idea that cortical shape is determined primarily by nongenetic factors, which is consistent with the important increase of cortical folding from birth to adult life and thus predominantly constrained by environmental factors. Nevertheless, the genetic cues, implicated with various local levels of heritability in the formation of sulcal pits, play a fundamental role in the normal gyral pattern development. Quantifying their influence and identifying the underlying genetic variants would provide insight into neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/anatomía & histología , Genotipo , Conectoma , Humanos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 161-164, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29059835

RESUMEN

Mapping out the development of the brain in early childhood is a critical part of understanding neurological disorders. The brain grows rapidly in early life, reaching 95% of the final volume by age 6. A normative atlas containing structural parameters that indicate development would be a powerful tool in understanding the progression of neurological diseases. Although some studies have begun exploring cortical development in pediatric imaging, sulci have not been examined extensively. Here, we study the changes in the Central Sulcus (CS), which is one of the earliest sulci to develop from the fetal stage, at early developmental age 1-3 years old using high resolution magnetic resonance images. Parameterization of the central sulcus was performed and results show us that the CS change corresponds to the development of the mouth and tongue regions.


Asunto(s)
Corteza Cerebral , Preescolar , Humanos , Imagen por Resonancia Magnética
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3008-3011, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060531

RESUMEN

We used BrainVisa software in an exploratory analysis measuring the depth and sulcal profile of the central sulci of congenitally blind and sighted individuals. We found the greatest differences between the groups at locations on the central sulcus corresponding with the pli de passage fronto-parietal moyen (PPFM), suggesting a cortical reorganization of the primary sensorimotor area of the hand within the central sulcus. This may be in response to the congenitally blind individuals' mastery of Braille or general increase of hand use in everyday life.


Asunto(s)
Corteza Cerebral , Ceguera , Mano , Humanos , Imagen por Resonancia Magnética
20.
Neuroimage Clin ; 16: 98-110, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28765809

RESUMEN

BACKGROUND: Neuroimaging studies help us better understand the pathophysiology and symptoms of Parkinson's disease (PD). In several of these studies, diffusion tensor imaging (DTI) was used to investigate structural changes in cerebral tissue. Although data have been provided as regards to specific brain areas, a whole brain meta-analysis is still missing. METHODS: We compiled 39 studies in this meta-analysis: 14 used fractional anisotropy (FA), 1 used mean diffusivity (MD), and 24 used both indicators. These studies comprised 1855 individuals, 1087 with PD and 768 healthy controls. Regions of interest were classified anatomically (subcortical structures; white matter; cortical areas; cerebellum). Our statistical analysis considered the disease effect size (DES) as the main variable; the heterogeneity index (I2) and Pearson's correlations between the DES and co-variables (demographic, clinical and MRI parameters) were also calculated. RESULTS: Our results showed that FA-DES and MD-DES were able to distinguish between patients and healthy controls. Significant differences, indicating degenerations, were observed within the substantia nigra, the corpus callosum, and the cingulate and temporal cortices. Moreover, some findings (particularly in the corticospinal tract) suggested opposite brain changes associated with PD. In addition, our results demonstrated that MD-DES was particularly sensitive to clinical and MRI parameters, such as the number of DTI directions and the echo time within white matter. CONCLUSIONS: Despite some limitations, DTI appears as a sensitive method to study PD pathophysiology and severity. The association of DTI with other MRI methods should also be considered and could benefit the study of brain degenerations in PD.


Asunto(s)
Imagen de Difusión Tensora , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...