Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0096624, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717141

RESUMEN

To combat the global burden of malaria, development of new drugs to replace or complement current therapies is urgently required. Here, we show that the compound MMV1557817 is a selective, nanomolar inhibitor of both Plasmodium falciparum and Plasmodium vivax aminopeptidases M1 and M17, leading to inhibition of end-stage hemoglobin digestion in asexual parasites. MMV1557817 can kill sexual-stage P. falciparum, is active against murine malaria, and does not show any shift in activity against a panel of parasites resistant to other antimalarials. MMV1557817-resistant P. falciparum exhibited a slow growth rate that was quickly outcompeted by wild-type parasites and were sensitized to the current clinical drug, artemisinin. Overall, these results confirm MMV1557817 as a lead compound for further drug development and highlights the potential of dual inhibition of M1 and M17 as an effective multi-species drug-targeting strategy.IMPORTANCEEach year, malaria infects approximately 240 million people and causes over 600,000 deaths, mostly in children under 5 years of age. For the past decade, artemisinin-based combination therapies have been recommended by the World Health Organization as the standard malaria treatment worldwide. Their widespread use has led to the development of artemisinin resistance in the form of delayed parasite clearance, alongside the rise of partner drug resistance. There is an urgent need to develop and deploy new antimalarial agents with novel targets and mechanisms of action. Here, we report a new and potent antimalarial compound, known as MMV1557817, and show that it targets multiple stages of the malaria parasite lifecycle, is active in a preliminary mouse malaria model, and has a novel mechanism of action. Excitingly, resistance to MMV15578117 appears to be self-limiting, suggesting that development of the compound may provide a new class of antimalarial.

2.
Front Cell Infect Microbiol ; 13: 1332146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38282616

RESUMEN

Apicomplexan parasites that reside within a parasitophorous vacuole harbor a conserved pore-forming protein that enables small-molecule transfer across the parasitophorous vacuole membrane (PVM). In Plasmodium parasites that cause malaria, this nutrient pore is formed by EXP2 which can complement the function of GRA17, an orthologous protein in Toxoplasma gondii. EXP2, however, has an additional function in Plasmodium parasites, serving also as the pore-forming component of the protein export machinery PTEX. To examine how EXP2 can play this additional role, transgenes that encoded truncations of EXP2, GRA17, hybrid GRA17-EXP2, or EXP2 under the transcriptional control of different promoters were expressed in EXP2 knockdown parasites to determine which could complement EXP2 function. This revealed that EXP2 is a unique pore-forming protein, and its protein export role in P. falciparum cannot be complemented by T. gondii GRA17. This was despite the addition of the EXP2 assembly strand and part of the linker helix to GRA17, which are regions necessary for the interaction of EXP2 with the other core PTEX components. This indicates that the body region of EXP2 plays a critical role in PTEX assembly and/or that the absence of other T. gondii GRA proteins in P. falciparum leads to its reduced efficiency of insertion into the PVM and complementation potential. Altering the timing and abundance of EXP2 expression did not affect protein export but affected parasite viability, indicating that the unique transcriptional profile of EXP2 when compared to other PTEX components enables it to serve an additional role in nutrient exchange.


Asunto(s)
Malaria Falciparum , Proteínas Protozoarias , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo
3.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097817

RESUMEN

Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.


Malaria is a disease spread by mosquitoes. When infected insects bite the skin, they inject parasites called Plasmodium into the host. The symptoms of the disease then develop when Plasmodium infect host red blood cells. These parasites cannot make the raw materials to build their own proteins, so instead, they digest haemoglobin ­ the protein used by red blood cells to carry oxygen ­ and use its building blocks to produce proteins. Blocking the digestion of haemoglobin can stop malaria infections in their tracks, but it is unclear how exactly Plasmodium parasites break down the protein. Researchers think that a group of four enzymes called aminopeptidases are responsible for the final stage in this digestion, releasing the amino acids that make up haemoglobin. However, the individual roles of each of these aminopeptidases are not yet known. To start filling this gap, Edgar et al. set out to study one of these aminopeptidases, called PfA-M17. First, they genetically modified Plasmodium falciparum parasites so that the levels of this aminopeptidase were reduced during infection. Without the enzyme, the parasites were unable to grow. The next step was to confirm that this was because PfA-M17 breaks down haemoglobin, and not for another reason. To test this, Edgar et al. designed a new molecule that could stop PfA-M17 from releasing amino acids. This molecule, which they called 'compound 3', had the same effect as reducing the levels of PfA-M17. Further analysis showed that the amino acids that PfA- M17 releases match the amino acids found in haemoglobin. Malaria causes hundreds of thousands of deaths per year. Although there are treatments available, the Plasmodium parasites are starting to develop resistance. Confirming the role of PfA-M17 provides a starting point for new studies by parasitologists, biologists, and drug developers. This could lead to the development of chemicals that block this enzyme, forming the basis for new treatments.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Aminopeptidasas/química , Aminopeptidasas/genética , Digestión , Hemoglobinas , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Inhibidores de Proteasas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
4.
Curr Opin Microbiol ; 69: 102196, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037636

RESUMEN

Most eukaryotic proteins undergo post-translational modifications (PTMs) that significantly alter protein properties, regulate diverse cellular processes and increase proteome complexity. Among these PTMs, lipidation plays a unique and key role in subcellular trafficking, signalling and membrane association of proteins through altering substrate function, and hydrophobicity via the addition and removal of lipid groups. Three prevalent classes of lipid modifications in Plasmodium parasites include prenylation, myristoylation, and palmitoylation that are important for regulating parasite-specific molecular processes. The enzymes that catalyse these lipid attachments have also been explored as potential drug targets for antimalarial development. In this review, we discuss these lipidation processes in Plasmodium spp. and the methodologies that have been used to identify these modifications in the deadliest species of malaria parasite, Plasmodium falciparum. We also discuss the development status of inhibitors that block these pathways.


Asunto(s)
Parásitos , Plasmodium , Animales , Lípidos , Plasmodium/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo
5.
Front Cell Dev Biol ; 9: 649184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842474

RESUMEN

Plasmodium parasites responsible for the disease malaria reside within erythrocytes. Inside this niche host cell, parasites internalize and digest host hemoglobin to source amino acids required for protein production. However, hemoglobin does not contain isoleucine, an amino acid essential for Plasmodium growth, and the parasite cannot synthesize it de novo. The parasite is also more metabolically active than its host cell, and the rate at which some nutrients are consumed exceeds the rate at which they can be taken up by erythrocyte transporters. To overcome these constraints, Plasmodium parasites increase the permeability of the erythrocyte membrane to isoleucine and other low-molecular-weight solutes it requires for growth by forming new permeation pathways (NPPs). In addition to the erythrocyte membrane, host nutrients also need to cross the encasing parasitophorous vacuole membrane (PVM) and the parasite plasma membrane to access the parasite. This review outlines recent advances that have been made in identifying the molecular constituents of the NPPs, the PVM nutrient channel, and the endocytic apparatus that transports host hemoglobin and identifies key knowledge gaps that remain. Importantly, blocking the ability of Plasmodium to source essential nutrients is lethal to the parasite, and thus, components of these key pathways represent potential antimalaria drug targets.

6.
Cell Microbiol ; 23(8): e13332, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33774908

RESUMEN

During its intraerythrocytic life cycle, the human malaria parasite Plasmodium falciparum supplements its nutritional requirements by scavenging substrates from the plasma through the new permeability pathways (NPPs) installed in the red blood cell (RBC) membrane. Parasite proteins of the RhopH complex: CLAG3, RhopH2, RhopH3, have been implicated in NPP activity. Here, we studied 13 exported proteins previously hypothesised to interact with RhopH2, to study their potential contribution to the function of NPPs. NPP activity assays revealed that the 13 proteins do not appear to be individually important for NPP function, as conditional knockdown of these proteins had no effect on sorbitol uptake. Intriguingly, reciprocal immunoprecipitation assays showed that five of the 13 proteins interact with all members of the RhopH complex, with PF3D7_1401200 showing the strongest association. Mass spectrometry-based proteomics further identified new protein complexes; a cytoskeletal complex and a Maurer's clefts/J-dot complex, which overall helps clarify protein-protein interactions within the infected RBC (iRBC) and is suggestive of the potential trafficking route of the RhopH complex itself to the RBC membrane.


Asunto(s)
Parásitos , Plasmodium falciparum , Animales , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Humanos , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/metabolismo
7.
Front Cell Infect Microbiol ; 11: 829823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096663

RESUMEN

Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/uso terapéutico , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Vacuolas
8.
Cell Microbiol ; 20(8): e12844, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29582546

RESUMEN

The inner membrane complex and the apical secretory organelles are defining features of apicomplexan parasites. Despite their critical roles, the mechanisms behind the biogenesis of these structures in the malaria parasite Plasmodium falciparum are still poorly defined. We here show that decreasing expression of the P. falciparum homologue of the conserved endolysomal escorter Sortilin-VPS10 prevents the formation of the inner membrane complex and abrogates the generation of new merozoites. Moreover, protein trafficking to the rhoptries, the micronemes, and the dense granules is disrupted, which leads to the accumulation of apical complex proteins in the endoplasmic reticulum and the parasitophorous vacuole. We further show that protein export to the erythrocyte and transport through the constitutive secretory pathway are functional. Taken together, our results suggest that the malaria parasite P. falciparum Sortilin has potentially broader functions than most of its other eukaryotic counterparts.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Merozoítos/crecimiento & desarrollo , Biogénesis de Organelos , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Adaptadoras del Transporte Vesicular/genética , Técnicas de Silenciamiento del Gen , Transporte de Proteínas
9.
PLoS One ; 13(3): e0193538, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29509772

RESUMEN

The ability of Plasmodium parasites to egress from their host red blood cell is critical for the amplification of these parasites in the blood. Previous forward chemical genetic approaches have implicated the subtilisin-like protease (SUB1) and the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) as key players in egress, with the final step of SUB1 maturation thought to be due to the activity of DPAP3. In this study, we have utilized a reverse genetics approach to engineer transgenic Plasmodium falciparum parasites in which dpap3 expression can be conditionally regulated using the glmS ribozyme based RNA-degrading system. We show that DPAP3, which is expressed in schizont stages and merozoites and localizes to organelles distinct from the micronemes, rhoptries and dense granules, is not required for the trafficking of apical proteins or processing of SUB1 substrates, nor for parasite maturation and egress from red blood cells. Thus, our findings argue against a role for DPAP3 in parasite egress and indicate that the phenotypes observed with DPAP3 inhibitors are due to off-target effects.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Eritrocitos/parasitología , Plasmodium falciparum/enzimología , Western Blotting , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Técnica del Anticuerpo Fluorescente Indirecta , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Microscopía Inmunoelectrónica , Orgánulos/enzimología , Organismos Modificados Genéticamente , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Subtilisinas/metabolismo
10.
Elife ; 62017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252383

RESUMEN

Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Ratones , Pirimidinas/metabolismo , Vitaminas/metabolismo
11.
Cell Microbiol ; 19(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28205319

RESUMEN

Plasmodium parasites must invade erythrocytes in order to cause the disease malaria. The invasion process involves the coordinated secretion of parasite proteins from apical organelles that include the rhoptries. The rhoptry is comprised of two compartments: the neck and the bulb. Rhoptry neck proteins are involved in host cell adhesion and formation of the tight junction that forms between the invading parasite and erythrocyte, whereas the role of rhoptry bulb proteins remains ill-defined due to the lack of functional studies. In this study, we show that the rhoptry-associated protein (RAP) complex is not required for rhoptry morphology or erythrocyte invasion. Instead, post-invasion when the parasite is bounded by a parasitophorous vacuolar membrane (PVM), the RAP complex facilitates the survival of the parasite in its new intracellular environment. Consequently, conditional knockdown of members of the RAP complex leads to altered PVM structure, delayed intra-erythrocytic growth, and reduced parasitaemias in infected mice. This study provides evidence that rhoptry bulb proteins localising to the parasite-host cell interface are not simply by-products of the invasion process but contribute to the growth of Plasmodium in vivo.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/parasitología , Factores de Virulencia/metabolismo , Animales , Modelos Animales de Enfermedad , Malaria/parasitología , Ratones Endogámicos BALB C
12.
Sci Rep ; 6: 21855, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911447

RESUMEN

Hepatitis A virus (HAV) replicates in the liver, and is excreted from the body in feces. However, the mechanisms of HAV transport from hepatocytes to the gastrointestinal tract are poorly understood, mainly due to lack of suitable in vitro models. Here, we use a polarized hepatic cell line and in vivo models to demonstrate vectorial transport of HAV from hepatocytes into bile via the apical cell membrane. Although this transport is specific for HAV, the rate of fecal excretion in inefficient, accounting for less than 1% of input virus from the bloodstream per hour. However, we also found that the rate of HAV excretion was enhanced in the presence of HAV-specific IgA. Using mice lacking the polymeric IgA receptor (pIgR(-/-)), we show that a proportion of HAV:IgA complexes are transported via the pIgR demonstrating a role for specific antibody in pathogen excretion.


Asunto(s)
Virus de la Hepatitis A/fisiología , Inmunoglobulina A/metabolismo , Transcitosis , Animales , Western Blotting , Células CACO-2 , Calicivirus Felino/inmunología , Calicivirus Felino/metabolismo , Calicivirus Felino/fisiología , Polaridad Celular , Células Cultivadas , Heces/virología , Virus de la Hepatitis A/inmunología , Virus de la Hepatitis A/aislamiento & purificación , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Inmunoglobulina A/inmunología , Hígado/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Conejos , Receptores Fc/deficiencia , Receptores Fc/genética , Receptores Fc/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación
13.
Nature ; 511(7511): 587-91, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25043043

RESUMEN

During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Eritrocitos/metabolismo , Eritrocitos/parasitología , Proteínas de Choque Térmico/genética , Humanos , Estadios del Ciclo de Vida/fisiología , Complejos Multiproteicos/metabolismo , Transporte de Proteínas/genética , Proteínas Protozoarias/genética , Vacuolas/metabolismo , Vacuolas/parasitología
14.
Trends Parasitol ; 29(5): 228-36, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23570755

RESUMEN

Apicomplexan parasites, including the Plasmodium species that cause malaria, contain three unusual apical secretory organelles (micronemes, rhoptries, and dense granules) that are required for the infection of new host cells. Because of their specialized nature, the majority of proteins secreted from these organelles are unique to Apicomplexans and are consequently poorly characterized. Although rhoptry proteins of Plasmodium have been implicated in events central to invasion, there is growing evidence to suggest that proteins originating from this organelle play key roles downstream of parasite entry into the host cell. Here we discuss recent work that has advanced our knowledge of rhoptry protein trafficking and function, and highlight areas of research that require further investigation.


Asunto(s)
Apicomplexa/patogenicidad , Orgánulos/metabolismo , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Apicomplexa/metabolismo , Interacciones Huésped-Parásitos , Plasmodium/fisiología , Transporte de Proteínas
15.
PLoS Pathog ; 7(10): e1002302, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028650

RESUMEN

Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly.


Asunto(s)
Hepacivirus/fisiología , Proteínas del Núcleo Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus/fisiología , Células HEK293 , Hepacivirus/crecimiento & desarrollo , Hepacivirus/patogenicidad , Humanos , Lípidos , Microscopía Confocal , Microtúbulos , Proteínas del Núcleo Viral/genética
17.
J Virol ; 82(17): 8733-42, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18579610

RESUMEN

Hepatitis A virus (HAV) is an enterically transmitted virus that replicates predominantly in hepatocytes within the liver before excretion via bile through feces. Hepatocytes are polarized epithelial cells, and it has been assumed that the virus load in bile results from direct export of HAV via the apical domain of polarized hepatocytes. We have developed a subclone of hepatocyte-derived HepG2 cells (clone N6) that maintains functional characteristics of polarized hepatocytes but displays morphology typical of columnar epithelial cells, rather than the complex morphology that is typical of hepatocytes. N6 cells form microcolonies of polarized cells when grown on glass and confluent monolayers of polarized cells on semipermeable membranes. When N6 microcolonies were exposed to HAV, infection was restricted to peripheral cells of polarized colonies, whereas all cells could be infected in colonies of nonpolarized HepG2 cells (clone C11) or following disruption of tight junctions in N6 colonies with EGTA. This suggests that viral entry occurs predominantly via the basolateral plasma membrane, consistent with uptake of virus from the bloodstream after enteric exposure, as expected. Viral export was also found to be markedly vectorial in N6 but not C11 cells. However, rather than being exported from the apical domain as expected, more than 95% of HAV was exported via the basolateral domain of N6 cells, suggesting that virus is first excreted from infected hepatocytes into the bloodstream rather than to the biliary tree. Enteric excretion of HAV may therefore rely on reuptake and transcytosis of progeny HAV across hepatocytes into the bile. These studies provide the first example of the interactions between viruses and polarized hepatocytes.


Asunto(s)
Polaridad Celular , Endocitosis/fisiología , Virus de la Hepatitis A/fisiología , Hepatocitos/virología , Animales , Caliciviridae/crecimiento & desarrollo , Carcinoma Hepatocelular/patología , Gatos , Técnicas de Cultivo de Célula , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Células Clonales , Medio de Cultivo Libre de Suero , Células Epiteliales/metabolismo , Células Epiteliales/virología , Técnica del Anticuerpo Fluorescente Indirecta , Hepatitis A/transmisión , Hepatitis A/virología , Virus de la Hepatitis A/crecimiento & desarrollo , Virus de la Hepatitis A/aislamiento & purificación , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Humanos , Riñón/citología , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Microvellosidades/ultraestructura , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestructura , Uniones Estrechas/ultraestructura , Ensayo de Placa Viral , Proteína de la Zonula Occludens-1
18.
J Virol Methods ; 133(1): 62-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16300833

RESUMEN

A novel method was developed for the precise quantitation of viruses using infrared fluorescent detection of foci of infection in conventional cell culture plates. In this assay, termed the infrared fluorescent immunofocus assay (IR-FIFA), appropriate cell cultures were infected with serial dilutions of hepatitis A virus (HAV) or measles virus (MV) and maintained with a semi-solid overlay for 1-5 days. Cell monolayers were fixed with formaldehyde, and then stained in succession with a primary monoclonal antibody and an Alexa Fluor 680 conjugate. Foci of infection (analogous to plaques) were detected by scanning culture plates using the Odyssey infrared imaging system and counted to determine the virus titre, expressed as focus forming units (FFU) per mL, as is done for conventional plaque assays. HAV and MV were used as models of minimally cytopathic viruses, and showed a linear dose-response between focus formation and virus dilution. Viral titres calculated using this method were comparable to conventionally used methods. The IR-FIFA was also successfully adapted to quantify duck hepatitis B virus (DHBV) as a model for a non-cytopathic virus. This simple and sensitive assay will have wide use for the quantitation of non-cytopathic and minimally cytopathic viruses.


Asunto(s)
Virus de la Hepatitis A/crecimiento & desarrollo , Virus de la Hepatitis B del Pato/crecimiento & desarrollo , Virus del Sarampión/crecimiento & desarrollo , Animales , Anticuerpos Monoclonales/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Chlorocebus aethiops , Fluorescencia , Técnica del Anticuerpo Fluorescente Indirecta , Colorantes Fluorescentes , Virus de la Hepatitis A/inmunología , Virus de la Hepatitis B del Pato/inmunología , Humanos , Cinética , Macaca mulatta , Virus del Sarampión/inmunología , Pruebas de Neutralización , Radioinmunoensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...