Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(11)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36422591

RESUMEN

A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives was designed, synthesized, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Pharmacological results showed antiprotozoal activity with IC50 values in the sub and µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The substituted diphenylphenanthroline 1l was identified as the most potent antimalarial derivative with a ratio of cytotoxic to antiparasitic activities of 505.7 against the P. falciparum CQ-resistant strain W2. Against the promastigote forms of L. donovani, the phenanthrolines 1h, 1j, 1n and 1o were the most active with IC50 from 2.52 to 4.50 µM. The phenanthroline derivative 1o was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 91 on T. brucei brucei strain. FRET melting and native mass spectrometry experiments evidenced that the nitrogen heterocyclic derivatives bind the telomeric G-quadruplexes of P. falciparum and Trypanosoma. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma could be considered to be possible targets of this kind of nitrogen heterocyclic derivatives, their potential ability to stabilize the parasitic telomeric G-quadruplexes have been determined through the FRET melting assay and by native mass spectrometry.

2.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36015146

RESUMEN

An antileishmanial structure−activity relationship (SAR) study focused on positions 2 and 8 of the imidazo[1,2-a]pyridine ring was conducted through the synthesis of 22 new derivatives. After being screened on the promatigote and axenic amastigote stages of Leishmania donovani and L. infantum, the best compounds were tested against the intracellular amastigote stage of L. infantum and evaluated regarding their in vitro physicochemical and pharmacokinetic properties, leading to the discovery of a new antileishmanial6-chloro-3-nitro-8-(pyridin-4-yl)-2-[(3,3,3-trifluoropropylsulfonyl)methyl]imidazo[1,2-a]pyridine hit. It displayed low cytotoxicities on both HepG2 and THP1 cell lines (CC50 > 100 µM) associated with a good activity against the intracellular amastigote stage of L. infantum (EC50 = 3.7 µM versus 0.4 and 15.9 µM for miltefosine and fexinidazole, used as antileishmanial drug references). Moreover, in comparison with previously reported derivatives in the studied series, this compound displayed greatly improved aqueous solubility, good mouse microsomal stability (T1/2 > 40 min) and high gastrointestinal permeability in a PAMPA model, making it an ideal candidate for further in vivo studies on an infectious mouse model.

3.
Eur J Med Chem ; 206: 112668, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795774

RESUMEN

To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program.


Asunto(s)
Imidazoles/química , Imidazoles/farmacología , Piridinas/química , Piridinas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Daño del ADN/efectos de los fármacos , Descubrimiento de Drogas , Células Hep G2 , Humanos , Imidazoles/metabolismo , Imidazoles/farmacocinética , Concentración 50 Inhibidora , Ratones , Pruebas de Sensibilidad Parasitaria , Piridinas/metabolismo , Piridinas/farmacocinética , Albúmina Sérica/metabolismo , Relación Estructura-Actividad , Tripanocidas/metabolismo , Tripanocidas/farmacocinética
4.
Eur J Med Chem ; 202: 112558, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32652409

RESUMEN

An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi (EC50 amastigotes = 1.2 µM) as benznidazole and fexinidazole. An in vitro comet assay showed that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (-0.68 V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility while maintaining good activity and low cytotoxicity when the hydroxyl group was at position beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life and a high albumin binding (98.5%). Moreover, compound 19 was orally absorbed and was well tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in parasitized mouse models, looking for a novel antitrypanosomal lead compound.


Asunto(s)
Nitroimidazoles/farmacología , Piridinas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estructura Molecular , Nitroimidazoles/síntesis química , Nitroimidazoles/química , Pruebas de Sensibilidad Parasitaria , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
5.
ACS Med Chem Lett ; 11(4): 464-472, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292551

RESUMEN

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 µM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.

6.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31899980

RESUMEN

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Diseño de Fármacos , Quinolinas/química , Quinolinas/farmacología , Antiprotozoarios/síntesis química , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinolinas/síntesis química , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos
7.
Biomed Res Int ; 2019: 6070176, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886231

RESUMEN

Human African Trypanosomiasis may become manageable in the next decade with fexinidazole. However, currently stage diagnosis remains difficult to implement in the field and requires a lumbar puncture. Our study of an Angolan cohort of T. b. gambiense-infected patients used other staging criteria than those recommended by the WHO. We compared WHO criteria (cell count and parasite identification in the CSF) with two biomarkers (neopterin and CXCL-13) which have proven potential to diagnose disease stage or relapse. Biological, clinical, and neurological data were analysed from a cohort of 83 patients. A neopterin concentration below 15.5 nmol/L in the CSF denoted patients with stage 1 disease, and a concentration above 60.31 nmol/L characterized patients with advanced stage 2 (trypanosomes in CSF and/or cytorachia higher than 20 cells) disease. CXCL-13 levels below 91.208 pg/mL denoted patients with stage 1 disease, and levels of CXCL-13 above 395.45 pg/mL denoted patients with advanced stage 2 disease. Values between these cut-offs may represent patients with intermediate stage disease. Our work supports the existence of an intermediate stage in HAT, and CXCL-13 and neopterin levels may help to characterize it.


Asunto(s)
Quimiocina CXCL13/líquido cefalorraquídeo , Neopterin/líquido cefalorraquídeo , Tripanosomiasis Africana , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Angola , Biomarcadores/líquido cefalorraquídeo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Tripanosomiasis Africana/líquido cefalorraquídeo , Tripanosomiasis Africana/clasificación , Tripanosomiasis Africana/diagnóstico , Adulto Joven
8.
PLoS Negl Trop Dis ; 13(8): e0007631, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31425540

RESUMEN

OBJECTIVE: Where human African trypanosomiasis (HAT) patients are seen, failure to microscopically diagnose infections by Trypanosoma brucei gambiense in blood smears and/or cerebrospinal fluid (CSF) in the critical early stages of the disease is the single most important factor in treatment failure, a result of delayed treatment onset or its absence. We hypothesized that the enhanced sensitivity of detergent-enhanced loop-mediated isothermal amplification (LAMP) will allow for point of care (POC) detection of African trypanosomes in the CSF of HAT patients where the probability for detecting a single parasite or parasite DNA molecule in 1 µL of CSF sample is negligible by current methods. METHODOLOGY: We used LAMP targeting the multicopy pan-T. brucei repetitive insertion mobile element (RIME LAMP) and the Trypanosoma brucei gambiense 5.8S rRNA-internal transcribed spacer 2 gene (TBG1 LAMP). We tested 1 µL out of 20 µL sham or Triton X-100 treated CSFs from 73 stage-1 and 77 stage-2 HAT patients from the Central African Republic and 100 CSF negative controls. RESULTS: Under sham conditions, parasite DNA was detected by RIME and TBG1 LAMP in 1.4% of the stage-1 and stage-2 gambiense HAT CSF samples tested. After sample incubation with detergent, the number of LAMP parasite positive stage-2 CSF's increased to 26%, a value which included the 2 of the 4 CSF samples where trypanosomes were identified microscopically. Unexpected was the 41% increase in parasite positive stage-1 CSF's detected by LAMP. Cohen's kappa coefficients for RIME versus TBG1 LAMP of 0.92 (95%CI: 0.82-1.00) for stage-1 and 0.90 (95%CI: 0.80-1.00) for stage-2 reflected a high level of agreement between the data sets indicating that the results were not due to amplicon contamination, data confirmed in χ2 tests (p<0.001) and Fisher's exact probability test (p = 4.7e-13). CONCLUSION: This study detected genomic trypanosome DNA in the CSF independent of the HAT stage and may be consistent with early CNS entry and other scenarios that identify critical knowledge gaps for future studies. Detergent-enhanced LAMP could be applicable for non-invasive African trypanosome detection in human skin and saliva or as an epidemiologic tool for the determination of human (or animal) African trypanosome prevalence in areas where chronically low parasitemias are present.


Asunto(s)
Líquido Cefalorraquídeo/parasitología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Índice de Severidad de la Enfermedad , Trypanosoma/aislamiento & purificación , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , República Centroafricana , Niño , Preescolar , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Detergentes/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , ARN Ribosómico 5.8S/genética , Sensibilidad y Especificidad , Trypanosoma/genética , Adulto Joven
9.
Biomed Res Int ; 2019: 6152489, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080827

RESUMEN

Infection with Toxoplasma gondii has a major implication in public health. Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect all nucleated cells belonging to a wide range of host species. One of the particularities of this parasite is its invasion and persistence in host cells of immunocompetent people. This infection is usually asymptomatic. In immunocompromised patients, the infection is severe and symptomatic. The mechanisms by which T. gondii persists are poorly studied in humans. In mouse models, many aspects of the interaction between the parasite and the host cells are being studied. Apoptosis is one of these mechanisms that could be modulated by Toxoplasma to persist in host cells. Indeed, Toxoplasma has often been implicated in the regulation of apoptosis and viability mechanisms in both human and murine infection models. Several of these studies centered on the regulation of apoptosis pathways have revealed interference of this parasite with host cell immunity, cell signalling, and invasion mechanisms. This review provides an overview of recent studies concerning the effect of Toxoplasma on different apoptotic pathways in infected host cells.


Asunto(s)
Apoptosis/inmunología , Interacciones Huésped-Parásitos/inmunología , Inmunidad Celular/inmunología , Toxoplasma/patogenicidad , Toxoplasmosis/inmunología , Animales , Apoptosis/fisiología , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal/inmunología
10.
ACS Med Chem Lett ; 10(1): 34-39, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655943

RESUMEN

Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 µM) alongside good antileishmanial activities (IC50 = 1-2.1 µM) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 µM) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 µM). Molecule 5, presenting a low reduction potential (E° = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies.

11.
J Proteomics ; 196: 150-161, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30414516

RESUMEN

Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.


Asunto(s)
Líquidos Corporales/metabolismo , Proteoma/metabolismo , Proteómica , Trypanosoma brucei gambiense/metabolismo , Tripanosomiasis Africana/metabolismo , Adolescente , Adulto , Anciano , Biomarcadores/metabolismo , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
12.
ChemMedChem ; 13(20): 2217-2228, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30221468

RESUMEN

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 µm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 µm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.


Asunto(s)
Nitroquinolinas/farmacología , Quinolonas/farmacología , Tripanocidas/farmacología , Catálisis , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Nitroquinolinas/toxicidad , Paladio/química , Pruebas de Sensibilidad Parasitaria , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/toxicidad , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/toxicidad , Trypanosoma brucei brucei/efectos de los fármacos
13.
Eur J Med Chem ; 157: 115-126, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30092366

RESUMEN

Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T. brucei brucei trypomastigotes and evaluated for their cytotoxicity on the HepG2 human cell line. Thus, 7 antileishmanial hit compounds were identified, displaying IC50 values in the 1.1-3 µM range. Compounds 13 and 23, the 2 most selective molecules (SI = >18 or >17) were additionally tested on both the promastigote and intramacrophage amastigote stages of L. donovani. The two molecules presented a good activity (IC50 = 1.2-1.3 µM) on the promastigote stage but only molecule 23, bearing a 4-pyridinyl substituent at position 8, was active on the intracellular amastigote stage, with a good IC50 value (2.3 µM), slightly lower than the one of miltefosine (IC50 = 4.3 µM). The antiparasitic screening also revealed 8 antitrypanosomal hit compounds, including 14 and 20, 2 very active (IC50 = 0.04-0.16 µM) and selective (SI = >313 to 550) molecules toward T. brucei brucei, in comparison with drug-candidate fexinidazole (IC50 = 0.6 & SI > 333) or reference drugs suramin and eflornithine (respective IC50 = 0.03 and 13.3 µM). Introducing an aryl moiety at position 8 of the scaffold quite significantly increased the antitrypanosomal activity of the pharmacophore. Antikinetoplastid molecules 13, 14, 20 and 23 were assessed for bioactivation by parasitic nitroreductases (either in L. donovani or in T. brucei brucei), using genetically modified parasite strains that over-express NTRs: all these molecules are substrates of type 1 nitroreductases (NTR1), such as those that are responsible for the bioactivation of fexinidazole. Reduction potentials measured for these 4 hit compounds were higher than that of fexinidazole (-0.83 V), ranging from -0.70 to -0.64 V.


Asunto(s)
Antineoplásicos/farmacología , Leishmania donovani/efectos de los fármacos , Nitrorreductasas/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Leishmania donovani/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/metabolismo , Trypanosoma brucei brucei/metabolismo
14.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29885575

RESUMEN

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Asunto(s)
Antiprotozoarios/farmacología , Técnicas Electroquímicas , Kinetoplastida/efectos de los fármacos , Nitroquinolinas/farmacología , Nitrorreductasas/metabolismo , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Kinetoplastida/enzimología , Leishmania infantum/efectos de los fármacos , Leishmania infantum/enzimología , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología
15.
Chem Biol Drug Des ; 91(5): 974-995, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29266861

RESUMEN

A series of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives was synthesized, and the compounds were screened in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiparasitic activity with IC50 values in the µm range. The in vitro cytotoxicity of these molecules was assessed by incubation with human HepG2 cells; for some derivatives, cytotoxicity was observed at significantly higher concentrations than antiparasitic activity. The 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline 1h was identified as the most potent antimalarial candidate with ratios of cytotoxic-to-antiparasitic activities of 107 and 39 against a chloroquine-sensitive and a chloroquine-resistant strain of P. falciparum, respectively. As the telomeres of the parasite P. falciparum are the likely target of this compound, we investigated stabilization of the Plasmodium telomeric G-quadruplexes by our phenanthroline derivatives through a FRET melting assay. The ligands 1f and 1m were noticed to be more specific for FPf8T with higher stabilization for FPf8T than for the human F21T sequence.


Asunto(s)
Antiprotozoarios/síntesis química , Diseño de Fármacos , Fenantrolinas/química , Antiprotozoarios/metabolismo , Antiprotozoarios/farmacología , Supervivencia Celular/efectos de los fármacos , G-Cuádruplex , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/crecimiento & desarrollo , Ligandos , Fenantrolinas/metabolismo , Fenantrolinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Temperatura de Transición , Trypanosoma brucei brucei/efectos de los fármacos
16.
PLoS Negl Trop Dis ; 10(12): e0005140, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941966

RESUMEN

Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of "sleeping sickness". Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control.


Asunto(s)
Biomarcadores/análisis , Trypanosoma brucei gambiense/metabolismo , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/parasitología , 5-Hidroxitriptófano/sangre , 5-Hidroxitriptófano/líquido cefalorraquídeo , 5-Hidroxitriptófano/aislamiento & purificación , 5-Hidroxitriptófano/orina , Adolescente , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Barrera Hematoencefálica , Femenino , Humanos , Masculino , Metabolómica/métodos , Neopterin/sangre , Neopterin/líquido cefalorraquídeo , Neopterin/aislamiento & purificación , Neopterin/orina , Análisis de Regresión , Sensibilidad y Especificidad , Adulto Joven
17.
Parasite ; 22: 39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26692261

RESUMEN

Interferon gamma (IFN-γ) is the major immune mediator that prevents toxoplasmic encephalitis in murine models. The lack of IFN-γ secretion causes reactivation of latent T. gondii infection that may confer a risk for severe toxoplasmic encephalitis. We analyse the effect of IFN-γ on immune mediator production and parasite multiplication in human nerve cells infected by tachyzoites of two T. gondii strains (RH and PRU). IFN-γ decreased the synthesis of MCP-1, G-CSF, GM-CSF and Serpin E1 in all cell types. It decreased IL-6, migration inhibitory factor (MIF) and GROα synthesis only in endothelial cells, while it increased sICAM and Serpin E1 synthesis only in neurons. The PRU strain burden increased in all nerve cells and in contrast, RH strain replication was controlled in IFN-γ-stimulated microglial and endothelial cells but not in IFN-γ-stimulated neurons. The proliferation of the PRU strain in all stimulated cells could be a specific effect of this strain on the host cell.


Asunto(s)
Citocinas/biosíntesis , Interferón gamma/farmacología , Neuronas/parasitología , Toxoplasma/fisiología , Animales , Línea Celular Tumoral , Células Cultivadas , Citocinas/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/parasitología , Fibroblastos/parasitología , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Parásitos , Humanos , Interleucina-6/biosíntesis , Interleucina-6/genética , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/parasitología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroblastoma/patología , Neuronas/metabolismo , Inhibidor 1 de Activador Plasminogénico/biosíntesis , Inhibidor 1 de Activador Plasminogénico/genética , Reproducción/efectos de los fármacos , Especificidad de la Especie , Toxoplasma/clasificación , Toxoplasmosis Cerebral/fisiopatología
18.
Biomed Res Int ; 2015: 583262, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26504815

RESUMEN

Sleeping sickness is a parasitic infection caused by two species of trypanosomes (Trypanosoma brucei gambiense and rhodesiense), transmitted by the tsetse fly. The disease eventually affects the central nervous system, resulting in severe neurological symptoms. Without treatment, death is inevitable. During the first stage of the disease, infected patients are mildly symptomatic and early detection of infection allows safer treatment (administered on an outpatient basis) which can avoid death; routine screening of the exposed population is necessary, especially in areas of high endemicity. The current therapeutic treatment of this disease, especially in stage 2, can cause complications and requires a clinical surveillance for several days. A good stage diagnosis of the disease is the cornerstone for delivering the adequate treatment. The task faced by the medical personnel is further complicated by the lack of support from local health infrastructure, which is at best weak, but often nonexistent. Therefore it is crucial to look for new more efficient technics for the diagnosis of stage which are also best suited to use in the field, in areas not possessing high-level health facilities. This review, after an overview of the disease, summarizes the current diagnosis procedures and presents the advances in the field.


Asunto(s)
Técnicas de Diagnóstico Molecular , Parasitología , Tripanosomiasis Africana/diagnóstico , Animales , Anticuerpos Antiprotozoarios/sangre , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendencias , Parasitología/métodos , Parasitología/tendencias , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/parasitología
19.
PLoS One ; 9(6): e98491, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24886982

RESUMEN

The severity of toxoplasmic infection depends mainly on the immune status of the host, but also on the Toxoplasma gondii strains, which differ by their virulence profile. The relationship between the human host and T. gondii has not yet been elucidated because few studies have been conducted on human models. The immune mechanisms involved in the persistence of T. gondii in the brains of immunocompetent subjects and during the reactivation of latent infections are still unclear. In this study, we analyzed the kinetics of immune mediators in human nervous cells in vitro, infected with two strains of T. gondii. Human neuroblast cell line (SH SY5Y), microglial (CMH5) and endothelial cells (Hbmec) were infected separately by RH (type I) or PRU (type II) strains for 8 h, 14 h, 24 h and 48 h (ratio 1 cell: 2 tachyzoites). Pro-inflammatory protein expression was different between the two strains and among different human nervous cells. The cytokines IL-6, IL-8 and the chemokines MCP-1 and GROα, and SERPIN E1 were significantly increased in CMH5 and SH SY5Y at 24 h pi. At this point of infection, the parasite burden declined in microglial cells and neurons, but remained high in endothelial cells. This differential effect on the early parasite multiplication may be correlated with a higher production of immune mediators by neurons and microglial cells compared to endothelial cells. Regarding strain differences, PRU strain, but not RH strain, stimulates all cells to produce pro-inflammatory growth factors, G-CSF and GM-CSF. These proteins could increase the inflammatory effect of this type II strain. These results suggest that the different protein expression profiles depend on the parasitic strain and on the human nervous cell type, and that this could be at the origin of diverse brain lesions caused by T. gondii.


Asunto(s)
Sistema Nervioso/parasitología , Toxoplasma/crecimiento & desarrollo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Humanos , Cinética , Ratones , Sistema Nervioso/inmunología , Sistema Nervioso/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
PLoS Negl Trop Dis ; 7(2): e2088, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469311

RESUMEN

BACKGROUND: Post-therapeutic follow-up is essential to confirm cure and to detect early treatment failures in patients affected by sleeping sickness (HAT). Current methods, based on finding of parasites in blood and cerebrospinal fluid (CSF) and counting of white blood cells (WBC) in CSF, are imperfect. New markers for treatment outcome evaluation are needed. We hypothesized that alternative CSF markers, able to diagnose the meningo-encephalitic stage of the disease, could also be useful for the evaluation of treatment outcome. METHODOLOGY/PRINCIPAL FINDINGS: Cerebrospinal fluid from patients affected by Trypanosoma brucei gambiense HAT and followed for two years after treatment was investigated. The population comprised stage 2 (S2) patients either cured or experiencing treatment failure during the follow-up. IgM, neopterin, B2MG, MMP-9, ICAM-1, VCAM-1, CXCL10 and CXCL13 were first screened on a small number of HAT patients (n = 97). Neopterin and CXCL13 showed the highest accuracy in discriminating between S2 cured and S2 relapsed patients (AUC 99% and 94%, respectively). When verified on a larger cohort (n = 242), neopterin resulted to be the most efficient predictor of outcome. High levels of this molecule before treatment were already associated with an increased risk of treatment failure. At six months after treatment, neopterin discriminated between cured and relapsed S2 patients with 87% specificity and 92% sensitivity, showing a higher accuracy than white blood cell numbers. CONCLUSIONS/SIGNIFICANCE: In the present study, neopterin was highlighted as a useful marker for the evaluation of the post-therapeutic outcome in patients suffering from sleeping sickness. Detectable levels of this marker in the CSF have the potential to shorten the follow-up for HAT patients to six months after the end of the treatment.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Monitoreo de Drogas/métodos , Neopterin/líquido cefalorraquídeo , Trypanosoma brucei gambiense/patogenicidad , Tripanosomiasis Africana/tratamiento farmacológico , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...