Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 44(28): 4261-4271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35727051

RESUMEN

Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative N2O emission by 65-70%, but had no significant effect on CO2 and CH4 emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Fertilizantes , Jardines , Carbón Orgánico/química , Suelo/química , Minerales , Nitrógeno/análisis
2.
Sci Total Environ ; 859(Pt 2): 160038, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36395847

RESUMEN

Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.


Asunto(s)
Ambiente , Contaminación Ambiental , Humanos , Animales , Estadios del Ciclo de Vida
3.
Sci Total Environ ; 769: 144785, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33477049

RESUMEN

While tire wear and tear is known to be a major source of microplastics in the environment, its monitoring is still hampered by the lack of analytical methods able to provide concentrations in environmental matrices. Tire wear particles (TWP) present in road runoff enter the drainage system through gully pots, built to prevent sediment deposition in the drainage system, and eventually protect downstream receiving waters. The aim of this study was to detect and quantify TWP in gully pot sediments, by using a novel method combining Simultaneous Thermal Analysis (STA), Fourier Transform Infrared (FTIR) spectroscopy and Parallel Factor Analysis (PARAFAC). The method was applied to samples from five sites in Southern Norway, characterized by different traffic densities and patterns. The method involved no sample pretreatment, the whole sediment sample was submitted to thermal decomposition in STA, and gases generated during pyrolysis were continuously transferred to FTIR. The FTIR data were arranged in a trilinear multi-way dataset (samples × IR spectra wavenumber × pyrolysis temperature) and then analyzed by PARAFAC. The results showed that TWP concentrations in gully pots varied greatly across sites, ranging from below 1 mg TWP/g sediment in streets with the lowest traffic densities, to 150 mg TWP/g sediment at the most trafficked study site. The results also indicated that other traffic conditions, such as driving patterns influence TWP concentrations. Finally, by enabling quantification of TWP in gully pot sediments, the approach presented here supports environmental monitoring of TWP and safe disposal of gully pot sediments, which is critical for environmental pollution management.

4.
Environ Sci Technol ; 54(19): 12316-12325, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32852942

RESUMEN

In this study, the effects of aged Ag and TiO2 nanoparticles (NPs), individually and as a mixture, in wastewater relative to their pristine counterparts on the development of the copepod nauplii (Tisbe battagliai) were investigated. NP behavior in synthetic wastewater and seawater was characterized during aging and exposure. A delayed development and subsequent mortality were observed after 6 days of exposure to aged Ag NPs, with a twofold decrease in EC50 (316 µg/L) compared to pristine NPs (EC50 640 µg/L) despite the similar dissolved Ag concentrations measured for aged and pristine Ag NPs (441 and 378 µg/L, respectively). In coexposures with TiO2 NPs, higher dissolved Ag levels were measured for aged NPs (238.3 µg/L) relative to pristine NPs (98.57 µg/L). Coexposure resulted in a slight decrease (15%) in the Ag NP EC50 (270 µg/L) with a 1.9-fold increase in the Ag NP retained within the organisms after depuration (2.82% retention) compared to Ag NP single exposures as measured with sp-ICP-MS, suggesting that the particles are still bioavailable despite the heteroaggregation observed between Ag, Ti NPs, and wastewater components. This study shows that the presence of TiO2 NPs can affect the stability and toxicity of Ag NPs in complex media that cannot be predicted solely based on ionic, total, or nanoparticulate concentrations, and the need for studying NP interactions in more complex matrices is highlighted.


Asunto(s)
Copépodos , Nanopartículas del Metal , Nanopartículas , Animales , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Titanio/toxicidad , Aguas Residuales
5.
Sci Total Environ ; 721: 137665, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32169641

RESUMEN

The current study provides an in vivo analysis of the production of reactive oxygen species (ROS) and oxidative stress in the nematode Caenorhabditis elegans following exposure to EU reference silver nanoparticles NM300K and AgNO3. Induction of antioxidant defenses was measured through the application of a SOD-1 reporter, and the HyPer and GRX biosensor strains to monitor changes in the cellular redox state. Both forms of Ag resulted in an increase in sod-1 expression, elevated H2O2 levels and an imbalance in the cellular GSSG/GSH redox status. Microscopy analysis of the strains revealed that AgNO3 induced ROS-related effects in multiple tissues, including the pharynx, intestinal cells and muscle tissues. In contrast, NM300K resulted in localized ROS production and oxidative stress, specifically in tissues surrounding the intestinal lumen. This indicates that Ag from AgNO3 exposure was readily transported across the whole body, while Ag or ROS from NM300K exposure was predominantly confined within the luminal tissues. Concentrations resulting in an increase in ROS production and changes in GSSG/GSH ratio were in line with the levels associated with observed physiological toxic effects. However, sod-1 was not induced at the lowest Ag concentrations, although reprotoxicity was seen at these levels. While both forms of Ag caused oxidative stress, impaired development, and reprotoxicity, the results suggest different involvement of ROS production to the toxic effects of AgNO3versus NM300K.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Caenorhabditis elegans , Peróxido de Hidrógeno , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Nitrato de Plata
6.
Environ Toxicol Chem ; 37(7): 1799-1810, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29603779

RESUMEN

Using Caenorhabditis elegans as a model organism, we addressed the potential linkage among toxicity of NM300K Ag nanoparticles (AgNPs), their particle size distribution, and the presence of dissolved Ag in the test media. Of the 3 endpoints assessed (growth, fertility, and reproduction), reproduction was the most sensitive, with the 50% effect concentration (EC50) ranging from 0.26 to 0.84 mg Ag L-1 and 0.08 to 0.11 mg Ag L-1 for NM300K and AgNO3 , respectively. Silver uptake by C. elegans was similar for both forms of Ag, whereas bioaccumulation was higher in AgNO3 exposure. The observed differences in toxicity between NM300K and AgNO3 did not correlate with bioaccumulated Ag, which suggests that toxicity is a function of the type of exposing agent (AgNPs vs AgNO3 ) and its mode of action. Before addition of the food source (Escherichia coli), size fractionation revealed that dissolved Ag comprised 13 to 90% and 4 to 8% of total Ag in the AgNO3 and NM300K treatments, respectively. No dissolved Ag was detectable in the actual test media due to immediate Ag adsorption to bacteria. The results of the present study indicate that information on behavior and characterization of exposure conditions is essential for nanotoxicity studies. Environ Toxicol Chem 2018;37:1799-1810. © 2018 SETAC.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Pruebas de Toxicidad , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Dispersión Dinámica de Luz , Exposición a Riesgos Ambientales/análisis , Escherichia coli/efectos de los fármacos , Fertilidad/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Reproducción/efectos de los fármacos , Nitrato de Plata/toxicidad , Suspensiones
7.
J Toxicol Environ Health A ; 80(16-18): 830-844, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837407

RESUMEN

Understanding how toxic contaminants affect wildlife species at various levels of biological organization (subcellular, histological, physiological, organism, and population levels) is a major research goal in both ecotoxicology and radioecology. A mechanistic understanding of the links between different observed perturbations is necessary to predict the consequences for survival, growth, and reproduction, which are critical for population dynamics. In this context, experimental and modeling studies were conducted using the nematode Caenorhabditis elegans. A chronic exposure to external gamma radiation was conducted under controlled conditions. Results showed that somatic growth and reproduction were reduced with increasing dose rate. Modeling was used to investigate whether radiation effects might be assessed using a mechanistic model based upon the dynamic energy budget (DEB) theory. A DEB theory in toxicology (DEB-tox), specially adapted to the case of gamma radiation, was developed. Modelling results demonstrated the suitability of DEB-tox for the analysis of radiotoxicity and suggested that external gamma radiation predominantly induced a direct reduction in reproductive capacity in C. elegans and produced an increase in costs for growth and maturation, resulting in a delay in growth and spawning observed at the highest tested dose rate.


Asunto(s)
Caenorhabditis elegans/efectos de la radiación , Rayos gamma/efectos adversos , Pruebas de Toxicidad Crónica , Animales , Relación Dosis-Respuesta en la Radiación , Gametogénesis/efectos de la radiación , Masculino , Modelos Biológicos , Reproducción/efectos de la radiación
8.
Chemosphere ; 182: 525-531, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28521168

RESUMEN

Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these.


Asunto(s)
Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental , Hierro/química , Hierro/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pruebas de Toxicidad/métodos , Animales , Contaminación Ambiental , Europa (Continente) , Zeolitas
9.
Environ Toxicol Chem ; 36(8): 2068-2073, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28079271

RESUMEN

Sewage sludge is an important amendment that enriches soils with organic matter and provides plants with nutrients such as nitrogen and phosphorus. However, knowledge on the fate and effects of organic pollutants present in the sludge on soil organisms is limited. In the present study, the uptake of triclosan, galaxolide, and tonalide in the earthworm Dendrobaena veneta was measured 1 wk after amendment of agricultural soil with sewage sludge, while elimination kinetics were assessed over a 21-d period after transferring worms to clean soil. After 1-wk exposure, earthworms had accumulated 2.6 ± 0.6 µg g-1 galaxolide, 0.04 ± 0.02 µg g-1 tonalide, and 0.6 ± 0.2 µg g-1 triclosan. Both synthetic musks were efficiently excreted and below the limit of quantification after 3 and 14 d of depuration for tonalide and galaxolide, respectively. Triclosan concentrations, on the other hand, did not decrease significantly over the depuration period, which may lead to the transfer of triclosan in the food web. Environ Toxicol Chem 2017;36:2068-2073. © 2017 SETAC.


Asunto(s)
Benzopiranos/toxicidad , Desinfectantes/toxicidad , Oligoquetos/efectos de los fármacos , Aguas del Alcantarillado/química , Contaminantes del Suelo/toxicidad , Tetrahidronaftalenos/toxicidad , Triclosán/toxicidad , Animales , Benzopiranos/análisis , Benzopiranos/metabolismo , Desinfectantes/análisis , Desinfectantes/metabolismo , Cadena Alimentaria , Oligoquetos/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Tetrahidronaftalenos/análisis , Tetrahidronaftalenos/metabolismo , Toxicocinética , Triclosán/análisis , Triclosán/metabolismo
10.
Sci Total Environ ; 527-528: 211-9, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25958368

RESUMEN

In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA left in their red blood cells.


Asunto(s)
Compuestos de Anilina/toxicidad , Mutágenos/toxicidad , Nitrobencenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos , Ensayo Cometa , Monitoreo del Ambiente , Pruebas de Mutagenicidad , Agua de Mar/química
11.
Sci Total Environ ; 420: 327-33, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22326137

RESUMEN

Sewage sludge application on soils represents an important potential source of silver nanoparticles (Ag NPs) to terrestrial ecosystems, and it is thus important to understand the fate of Ag NPs once in contact with soil components. Our aim was to compare the behavior of three different forms of silver, namely silver nitrate, citrate stabilized Ag NPs (5nm) and uncoated Ag NPs (19nm), in two soils with contrasting organic matter content, and to follow changes in binding strength over time. Soil samples were spiked with silver and left to age for 2h, 2 days, 5 weeks or 10 weeks before they were submitted to sequential extraction. The ionic silver solution and the two Ag NP types were radiolabeled so that silver could be quantified by gamma spectrometry by measuring the (110m)Ag tracer in the different sequential extraction fractions. Different patterns of partitioning of silver were observed for the three forms of silver. All types of silver were more mobile in the mineral soil than in the soil rich in organic matter, although the fractionation patterns were very different for the three silver forms in both cases. Over 20% of citrate stabilized Ag NPs was extractible with water in both soils the first two days after spiking (compared to 1-3% for AgNO(3) and uncoated Ag NPs), but the fraction decreased to trace levels thereafter. Regarding the 19nm uncoated Ag NPs, 80% was not extractible at all, but contrary to AgNO(3) and citrate stabilized Ag NPs, the bioaccessible fraction increased over time, and by day 70 was between 8 and 9 times greater than that seen in the other two treatments. This new and unexpected finding demonstrates that some Ag NPs can act as a continuous source of bioaccessible Ag, while AgNO(3) is rapidly immobilized in soil.


Asunto(s)
Nanopartículas del Metal/análisis , Aguas del Alcantarillado/química , Nitrato de Plata/análisis , Plata/análisis , Contaminantes del Suelo/análisis , Suelo/química , Nanopartículas del Metal/química , Plata/química , Nitrato de Plata/química , Contaminantes del Suelo/química , Factores de Tiempo
12.
Nanotoxicology ; 6(2): 186-95, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21486186

RESUMEN

Due to difficulties in tracing engineered nanoparticles (ENPs) in complex media, there are few data on the exposure of soil biota to ENPs. This study used neutron activated cobalt (Co NPs) and silver (Ag NPs) nanoparticles, as well as soluble cobalt and silver salts, to assess the uptake, excretion and biodistribution in the earthworm Eisenia fetida. Concentrations of cobalt in worms after four weeks exposure reached 88% and 69% of the Co ions and Co NPs concentrations in food, respectively, while corresponding values for Ag ions and Ag NPs were 2.3% and 0.4%. Both Ag ions and Ag NPs in earthworms were excreted rapidly, while only 32% of the cobalt accumulated from Co ions and Co NPs were excreted within four months. High accumulation of cobalt was found in blood and in the digestive tract. Metal characterization in the exposure medium was assessed by sequential extraction and ultrafiltration. The Co NPs showed significant dissolution and release of ions, while Ag ions and particularly Ag NPs were more inert.


Asunto(s)
Cobalto/farmacocinética , Nanopartículas del Metal/química , Oligoquetos/metabolismo , Plata/farmacocinética , Acetatos , Animales , Disponibilidad Biológica , Cobalto/metabolismo , Histocitoquímica , Oligoquetos/química , Plata/metabolismo , Suelo/química , Distribución Tisular , Ultrafiltración , Agua
13.
Aquat Toxicol ; 101(1): 49-56, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-20926143

RESUMEN

Macrophyte communities play an essential role in the way freshwater ecosystems function. It is thus of great concern to understand how environmental factors, especially anthropogenic ones, influence their composition and diversity. The aim of this study was to examine whether the effects of a herbicide mixture (50% atrazine, 35% isoproturon, 15% alachlor) on single macrophyte species can be used to predict its impact at a community level. In a first experiment we tested the sensitivity of six species (Azolla filiculoides, Ceratophyllum demersum, Elodea canadensis, Lemna minor, Myriophyllum spicatum and Vallisneria spiralis) grown separately and exposed to 0.6-600 µg L(-1) of the herbicide mixture. In a second experiment, conducted in microcosms, we tested the effects of herbicides on macrophyte assemblages composed of the same six species exposed to 0, 6 or 60 µg L(-1) of the herbicide mixture. Species grown separately exhibited growth inhibition at 60 and 600 µg L(-1). At 600 µg L(-1) the sensitivity differed significantly between species. V. spiralis was the most resistant species, C. demersum, M. spicatum and E. canadensis exhibited intermediate sensitivities, and A. filiculoides and L. minor were the most sensitive species. In microcosms, community biomass and Shannon evenness index were reduced after 8 weeks at 60 µg L(-1). Communities also exhibited changes in their composition: the relative and absolute abundance of C. demersum increased at 6 µg L(-1), while the relative abundance of V. spiralis increased at 60 µg L(-1). These results are in agreement with the individual responses of these species to the herbicides. It is therefore concluded that short-term effects of herbicides on simple macrophyte communities can be predicted from the sensitivity of individual species. However, further investigations are required to examine whether longer term effects can be predicted as well, especially in more complex communities.


Asunto(s)
Ecosistema , Helechos/efectos de los fármacos , Herbicidas/toxicidad , Magnoliopsida/efectos de los fármacos , Pruebas de Toxicidad/métodos , Acetamidas , Análisis de Varianza , Atrazina , Helechos/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Compuestos de Fenilurea , Valor Predictivo de las Pruebas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...