Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 61: 117-126, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27856349

RESUMEN

Neuroprotective strategies for ischemic stroke have failed to translate from bench to bedside, possibly due to the lack of consideration of key clinical co-morbidities. Stroke and co-morbidities are associated with raised levels of the pro-inflammatory cytokine interleukin-1 (IL-1). Inhibition of IL-1 by the administration of interleukin-1 receptor antagonist (IL-1Ra) has shown to be neuroprotective after experimental cerebral ischemia. Stroke can also trigger a robust neuroreparative response following injury, yet many of these new born neurons fail to survive or integrate into pre-existing circuits. Thus, we explore here effects of IL-1Ra on post-stroke neurogenesis in young and aged/co-morbid rats. Aged lean, aged Corpulent (a model of atherosclerosis, obesity and insulin resistance) and young Wistar male rats were exposed to transient cerebral ischemia, received subcutaneous IL-1Ra 3 and 6h during reperfusion, and effects on stroke outcome and neurogenesis were analyzed. Our results show that administration of IL-1Ra improves stroke outcome in both young and aged/co-morbid rats. Furthermore, IL-1Ra not only increases stem cell proliferation, but also significantly enhances neuroblast migration and the number of newly born neurons after cerebral ischemia. Overall, our data demonstrate that systemic administration of IL-1Ra improves outcome and promotes neurogenesis after experimental stroke, further highlighting the therapeutic potential of this clinically approved drug.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Movimiento Celular/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Masculino , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
2.
J Biol Rhythms ; 29(3): 151-166, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24916389

RESUMEN

Circadian oscillators are autonomous molecular rhythms that reside in cells to align whole-organism physiology and behavior to the 24-h day. In flies, as in mammals, the oscillator operates in cells that coexpress CLOCK (CLK) and CYCLE (CYC). Recent work in Drosophila has shown that CLK is unique in its ability to generate heterologous oscillators, indicating that Clk gene expression defines the circadian cell fate. Here, using standard in vitro and in vivo techniques, we show that TWIN-OF-EYELESS (TOY; dPax6) regulates Clk expression in small ventrolateral neurons (s-LNvs) that coordinate sleep-wake cycles. Crucially, toy binds multiple sites at the Clk locus, is expressed independent of CLK-CYC in LNvs, regulates CLK protein levels under optimal photoperiodic conditions, and sets clock-speed during endogenous free-run. Furthermore, TOY is necessary for the onset of Clk expression in LNvs during embryogenesis. We propose that TOY contributes to a transcription complex that functions upstream of the oscillator to promote Clk expression in s-LNvs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA