Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3809, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369692

RESUMEN

Second messengers, including cAMP, cGMP and Ca2+ are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca2+ changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals. These guidance molecules activate subcellular-specific second messenger crosstalk, each signaling network controlling distinct axonal morphology changes in vitro and pathfinding decisions in vivo.


Asunto(s)
Axones , Sistemas de Mensajero Secundario , Axones/fisiología , GMP Cíclico , Transducción de Señal
2.
Cell Rep ; 33(1): 108220, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027659

RESUMEN

Axonal arbors in many neuronal networks are exuberant early during development and become refined by activity-dependent competitive mechanisms. Theoretical work proposed non-competitive interactions between co-active axons to co-stabilize their connections, but the demonstration of such interactions is lacking. Here, we provide experimental evidence that reducing cyclic AMP (cAMP) signaling in a subset of retinal ganglion cells favors the elimination of thalamic projections from neighboring neurons, pointing to a cAMP-dependent interaction that promotes axon stabilization.


Asunto(s)
Axones/metabolismo , AMP Cíclico/metabolismo , Neuronas/metabolismo , Humanos , Transducción de Señal
3.
Cell Rep ; 32(3): 107934, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697983

RESUMEN

Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.


Asunto(s)
Calcio/metabolismo , Técnicas Genéticas , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Tapsigargina/farmacología
4.
Am J Hum Genet ; 106(2): 153-169, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31978331

RESUMEN

Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.


Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/etiología , Dineínas/metabolismo , Flagelos/patología , Mutación , Proteínas/genética , Cola del Espermatozoide/patología , Adulto , Axonema , Niño , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/patología , Dineínas/genética , Femenino , Flagelos/metabolismo , Homocigoto , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/patología , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Motilidad Espermática , Cola del Espermatozoide/metabolismo , Adulto Joven
5.
Cell Rep ; 27(13): 4003-4012.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242429

RESUMEN

cGMP is critical to a variety of cellular processes, but the available tools to interfere with endogenous cGMP lack cellular and subcellular specificity. We introduce SponGee, a genetically encoded chelator of this cyclic nucleotide that enables in vitro and in vivo manipulations in single cells and in biochemically defined subcellular compartments. SponGee buffers physiological changes in cGMP concentration in various model systems while not affecting cAMP signals. We provide proof-of-concept strategies by using this tool to highlight the role of cGMP signaling in vivo and in discrete subcellular domains. SponGee enables the investigation of local cGMP signals in vivo and paves the way for therapeutic strategies that prevent downstream signaling activation.


Asunto(s)
GMP Cíclico/metabolismo , Modelos Biológicos , Sistemas de Mensajero Secundario/fisiología , Animales , AMP Cíclico/genética , AMP Cíclico/metabolismo , GMP Cíclico/genética , Ratones , Ratas , Ratas Sprague-Dawley
6.
Nat Commun ; 7: 12896, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694812

RESUMEN

The development of neuronal circuits is controlled by guidance molecules that are hypothesized to interact with the cholesterol-enriched domains of the plasma membrane termed lipid rafts. Whether such domains enable local intracellular signalling at the submicrometre scale in developing neurons and are required for shaping the nervous system connectivity in vivo remains controversial. Here, we report a role for lipid rafts in generating domains of local cAMP signalling in axonal growth cones downstream of ephrin-A repulsive guidance cues. Ephrin-A-dependent retraction of retinal ganglion cell axons involves cAMP signalling restricted to the vicinity of lipid rafts and is independent of cAMP modulation outside of this microdomain. cAMP modulation near lipid rafts controls the pruning of ectopic axonal branches of retinal ganglion cells in vivo, a process requiring intact ephrin-A signalling. Together, our findings indicate that lipid rafts structure the subcellular organization of intracellular cAMP signalling shaping axonal arbors during the nervous system development.


Asunto(s)
Axones/metabolismo , AMP Cíclico/metabolismo , Efrina-A1/metabolismo , Microdominios de Membrana/química , Retina/citología , Retina/embriología , Animales , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Células Ganglionares de la Retina/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...