Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515553

RESUMEN

Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an adhesion process mediated by cell surface proteins. To gain an insight into the genetic factors of S. salivarius that dictate host adhesion and biofilm formation, we developed a screening method, based on the differential sedimentation of bacteria in semi-liquid conditions according to their auto-aggregation capacity, which allowed us to identify twelve mutations affecting this auto-aggregation phenotype. Mutations targeted genes encoding (i) extracellular components, including the CshA surface-exposed protein, the extracellular BglB glucan-binding protein, the GtfE, GtfG and GtfH glycosyltransferases and enzymes responsible for synthesis of cell wall polysaccharides (CwpB, CwpK), (ii) proteins responsible for the extracellular localization of proteins, such as structural components of the accessory SecA2Y2 system (Asp1, Asp2, SecA2) and the SrtA sortase, and (iii) the LiaR transcriptional response regulator. These mutations also influenced biofilm architecture, revealing that similar cell-to-cell interactions govern assembly of auto-aggregates and biofilm formation. We found that BglB, CshA, GtfH and LiaR were specifically associated with bacterial auto-aggregation, whereas Asp1, Asp2, CwpB, CwpK, GtfE, GtfG, SecA2 and SrtA also contributed to adhesion to host cells and host-derived components, or to interactions with the human pathogen Fusobacterium nucleatum. Our study demonstrates that our screening method could also be used to identify genes implicated in the bacterial interactions of pathogens or probiotics, for which aggregation is either a virulence trait or an advantageous feature, respectively.

2.
Environ Microbiol ; 19(9): 3579-3594, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28695648

RESUMEN

Bacterial adhesion is a critical step for colonization of the host. The pioneer colonizer and commensal bacterium of the human gastrointestinal tract, Streptococcus salivarius, has strong adhesive properties but the molecular determinants of this adhesion remain uncharacterized. Serine-rich repeat (SRR) glycoproteins are a family of adhesins that fulfil an important role in adhesion. In general, Gram-positive bacterial genomes have a unique SRR glycoprotein-encoding gene. We demonstrate that S. salivarius expresses three large and glycosylated surface-exposed proteins - SrpA, SrpB and SrpC - that show characteristics of SRR glycoproteins and are secreted through the accessory SecA2/Y2 system. Two glycosyltransferases - GtfE/F - encoded outside of the secA2/Y2 locus, unusually, perform the first step of the sequential glycosylation process, which is crucial for SRR activity. We show that SrpB and SrpC play complementary adhesive roles involved in several steps of the colonization process: auto-aggregation, biofilm formation and adhesion to a variety of host epithelial cells and components. We also show that at least one of the S. salivarius SRR glycoproteins is important for colonization in mice. SrpA, SrpB and SrpC are the main factors underlying the multifaceted adhesion of S. salivarius and, therefore, play a major role in host colonization.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Mucosa Intestinal/microbiología , Glicoproteínas de Membrana/metabolismo , Streptococcus salivarius/patogenicidad , Animales , Adhesión Bacteriana/genética , Células Epiteliales/microbiología , Tracto Gastrointestinal/microbiología , Glucosiltransferasas/genética , Glicosilación , Humanos , Masculino , Ratones , Modelos Animales , Streptococcus salivarius/genética , Streptococcus salivarius/metabolismo
3.
PLoS One ; 10(6): e0128099, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26035177

RESUMEN

Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.


Asunto(s)
Adhesión Bacteriana/fisiología , Biopelículas/crecimiento & desarrollo , Productos Lácteos/microbiología , Genes Bacterianos/genética , Streptococcus thermophilus/crecimiento & desarrollo , Streptococcus thermophilus/genética , Genoma Bacteriano , Genómica/métodos , Células HT29 , Humanos
4.
PLoS One ; 10(5): e0125371, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946041

RESUMEN

The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.


Asunto(s)
Mucosa Intestinal/metabolismo , PPAR gamma/biosíntesis , Streptococcus/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/biosíntesis , Angiopoyetinas/genética , Células CACO-2 , Línea Celular Tumoral , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de Unión a Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/genética , Regulación de la Expresión Génica , Células HT29 , Humanos , Inmunidad Mucosa/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Microbiota/inmunología , PPAR gamma/genética , Streptococcus/inmunología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA