Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(34): 14032-14042, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37575033

RESUMEN

We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moiré pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moiré potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Γ-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moiré hole, and (ii) that the moiré depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude - leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moiré twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.

2.
Nanoscale ; 15(9): 4561-4569, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36762535

RESUMEN

When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moiré pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moiré stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moiré-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moiré mini-band in width against the moiré-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10 meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.

3.
Nano Lett ; 21(19): 8103-8110, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34519503

RESUMEN

We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.

4.
Nature ; 584(7820): 215-220, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788735

RESUMEN

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure1-5. An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers6. The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition7-9, resulting in a periodically modulated pseudo-magnetic field10-14, which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state15-17. This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

5.
R Soc Open Sci ; 7(2): 191809, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32257336

RESUMEN

We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N ∼ 1010). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.

6.
Nano Lett ; 20(2): 979-988, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31961161

RESUMEN

A periodic spatial modulation, as created by a moiré pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moiré patterns, resulting in a so-called supermoiré (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.

7.
Phys Rev Lett ; 114(11): 116602, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25839298

RESUMEN

We describe an efficient numerical approach to calculate the longitudinal and transverse Kubo conductivities of large systems using Bastin's formulation. We expand the Green's functions in terms of Chebyshev polynomials and compute the conductivity tensor for any temperature and chemical potential in a single step. To illustrate the power and generality of the approach, we calculate the conductivity tensor for the quantum Hall effect in disordered graphene and analyze the effect of the disorder in a Chern insulator in Haldane's model on a honeycomb lattice.

8.
Phys Rev Lett ; 103(17): 176402, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19905774

RESUMEN

We study the effects of a nearby surface on the spectral weight of a Holstein polaron, using the inhomogeneous momentum average approximation which is accurate over the entire range of electron-phonon (e-ph) coupling strengths. The broken translational symmetry is taken into account exactly. We find that the e-ph coupling gives rise to a large additional surface potential, with strong retardation effects, which may bind surface states even when they are not normally expected. The surface, therefore, has a significant effect and bulk properties are recovered only very far away from it. These results demonstrate that interpretation in terms of bulk quantities of spectroscopic data sensitive only to a few surface layers is not always appropriate.

9.
Phys Rev Lett ; 102(18): 186403, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19518893

RESUMEN

We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable generalization of the momentum average approximation. While previous work on a parabolic band model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of spin-polarized currents in such materials, and thus for spintronic applications.

10.
Phys Rev Lett ; 101(9): 097004, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18851642

RESUMEN

When a tunneling barrier between two superconductors is formed by a normal material that would be a superconductor in the absence of phase fluctuations, the resulting Josephson effect can undergo an enormous enhancement. We establish this novel proximity effect by a general argument as well as a numerical simulation and argue that it may underlie recent experimental observations of the giant proximity effect between two cuprate superconductors separated by a barrier made of the same material rendered normal by severe underdoping.

11.
Phys Rev Lett ; 100(25): 256405, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18643685

RESUMEN

We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved using a generalization to the honeycomb lattice of the momentum average approximation, which is accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long lifetimes survive near the Dirac points even for very strong couplings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...