Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(1): e17189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909659

RESUMEN

Antarctica's extreme environmental conditions impose selection pressures on microbial communities. Indeed, a previous study revealed that bacterial assemblages at the Cierva Point Wetland Complex (CPWC) are shaped by strong homogeneous selection. Yet which bacterial phylogenetic clades are shaped by selection processes and their ecological strategies to thrive in such extreme conditions remain unknown. Here, we applied the phyloscore and feature-level ßNTI indexes coupled with phylofactorization to successfully detect bacterial monophyletic clades subjected to homogeneous (HoS) and heterogenous (HeS) selection. Remarkably, only the HoS clades showed high relative abundance across all samples and signs of putative microdiversity. The majority of the amplicon sequence variants (ASVs) within each HoS clade clustered into a unique 97% sequence similarity operational taxonomic unit (OTU) and inhabited a specific environment (lotic, lentic or terrestrial). Our findings suggest the existence of microdiversification leading to sub-taxa niche differentiation, with putative distinct ecotypes (consisting of groups of ASVs) adapted to a specific environment. We hypothesize that HoS clades thriving in the CPWC have phylogenetically conserved traits that accelerate their rate of evolution, enabling them to adapt to strong spatio-temporally variable selection pressures. Variable selection appears to operate within clades to cause very rapid microdiversification without losing key traits that lead to high abundance. Variable and homogeneous selection, therefore, operate simultaneously but on different aspects of organismal ecology. The result is an overall signal of homogeneous selection due to rapid within-clade microdiversification caused by variable selection. It is unknown whether other systems experience this dynamic, and we encourage future work evaluating the transferability of our results.


Asunto(s)
Microbiota , Humedales , Filogenia , Regiones Antárticas , Bacterias/genética
2.
Microbiol Mol Biol Rev ; 86(2): e0010921, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35389249

RESUMEN

Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.


Asunto(s)
Ecosistema , Microbiota , Nitrificación , Nitrógeno , Ciclo del Nitrógeno , Plantas , Suelo , Microbiología del Suelo
3.
Environ Microbiol ; 24(8): 3486-3499, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049116

RESUMEN

As functional traits are conserved at different phylogenetic depths, the ability to detect community assembly processes can be conditional on the phylogenetic resolution; yet most previous work quantifying their influence has focused on a single level of phylogenetic resolution. Here, we have studied the ecological assembly of bacterial communities from an Antarctic wetland complex, applying null models across different levels of phylogenetic resolution (i.e. clustering ASVs into OTUs with decreasing sequence identity thresholds). We found that the relative influence of the community assembly processes varies with phylogenetic resolution. More specifically, selection processes seem to impose stronger influence at finer (100% sequence similarity ASV) than at coarser (99%-97% sequence similarity OTUs) resolution. We identified environmental features related with the ecological processes and propose a conceptual model for the bacterial community assembly in this Antarctic ecosystem. Briefly, eco-evolutionary processes appear to be leading to different but very closely related ASVs in lotic, lentic and terrestrial environments. In all, this study shows that assessing community assembly processes at different phylogenetic resolutions is key to improve our understanding of microbial ecology. More importantly, a failure to detect selection processes at coarser phylogenetic resolution does not imply the absence of such processes at finer resolutions.


Asunto(s)
Ecosistema , Humedales , Regiones Antárticas , Bacterias/genética , Filogenia
4.
Sci Rep ; 6: 25712, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27162086

RESUMEN

Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors.


Asunto(s)
Bacterias/genética , Ecosistema , Microbiología Ambiental , Sphagnopsida/microbiología , Regiones Antárticas , Argentina , Bacterias/clasificación , Proteínas Bacterianas/genética , Geografía , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Especificidad de la Especie
5.
Environ Microbiol Rep ; 7(3): 547-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727763

RESUMEN

Bacterioplankton communities inhabiting peatlands have the potential to influence local ecosystem functions. However, most microbial ecology research in such wetlands has been done in ecosystems (mostly peat soils) of the Northern Hemisphere, and very little is known of the factors that drive bacterial community assembly in other regions of the world. In this study, we used high-throughput sequencing to analyse the structure of the bacterial communities in five pools located in a sub-Antarctic peat bog (Tierra del Fuego, Argentina), and tested for relationships between bacterial communities and environmental conditions. Bacterioplankton communities in peat bog pools were diverse and dominated by members of the Proteobacteria, Actinobacteria, Bacteroidetes and Verrucomicrobia. Community structure was largely explained by differences in hydrological connectivity, pH and nutrient status (ombrotrophic versus minerotrophic pools). Bacterioplankton communities in ombrotrophic pools showed phylogenetic clustering, suggesting a dominant role of deterministic processes in shaping these assemblages. These correlations between habitat characteristics and bacterial diversity patterns provide new insights into the factors regulating microbial populations in peatland ecosystems.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Microbiología Ambiental , Regiones Antárticas , Argentina , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia
6.
Appl Environ Microbiol ; 75(18): 5750-60, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19648369

RESUMEN

We used cultivation-independent methods to investigate the prokaryotic biogeography of the water column in six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. These lakes had different salt compositions and pH values and were at variable geographic distances, on both local and intercontinental scales, which allowed us to explore the microbial community composition within the context of both contemporary environmental conditions and geographic distance. Fourteen 16S rRNA gene clone libraries were constructed, and over 200 16S rRNA gene sequences were obtained. These sequences were used to construct biotic similarity matrices, which were used in combination with environmental similarity matrices and a distance matrix in the Mantel test to discover which factors significantly influenced biotic similarity. We showed that archaeal biogeography was influenced by contemporary environmental factors alone (Na+, CO3(2-), and HCO3(-) ion concentrations; pH; and temperature). Bacterial biogeography was influenced both by contemporary environmental factors (Na+, Mg2+, and HCO3(-) ion concentrations and pH) and by geographic distance.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Microbiología del Agua , Archaea/aislamiento & purificación , Argentina , Bacterias/aislamiento & purificación , China , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Sales (Química)/análisis , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA