Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319148

RESUMEN

Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Código de Histonas , Cromatina , Procesamiento Proteico-Postraduccional , Péptidos/metabolismo
2.
Res Sq ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546815

RESUMEN

Tardigrades are remarkable in their ability to survive extreme environments. The damage suppressor (Dsup) protein is thought responsible for their extreme resistance to reactive oxygen species (ROS) generated by irradiation. Here we show that expression of Ramazzottius varieornatus Dsup in Saccharomyces cerevisiae reduces oxidative DNA damage and extends the lifespan of budding yeast exposed to chronic oxidative genotoxicity. This protection from ROS requires either the Dsup HMGN-like domain or sequences C-terminal to same. Dsup associates with no apparent bias across the yeast genome, using multiple modes of nucleosome binding; the HMGN-like region interacts with both the H2A/H2B acidic patch and H3/H4 histone tails, while the C-terminal region binds DNA. These findings give precedent for engineering an organism by physically shielding its genome to promote survival and longevity in the face of oxidative damage.

3.
Elife ; 122023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204295

RESUMEN

In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Nucleosomas , Metilación , Acetilación
4.
J Thromb Haemost ; 18(10): 2732-2743, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654410

RESUMEN

BACKGROUND: Recent data propose a diagnostic and prognostic capacity for citrullinated histone H3 (H3Cit), a marker of neutrophil extracellular traps (NETs), in pathologic conditions such as cancer and thrombosis. However, current research is hampered by lack of standardized assays. OBJECTIVES: We aimed to develop an assay to reliably quantify nucleosomal H3Cit in human plasma. METHODS: We assessed the common practice of in vitro enzymatically modified histone H3 as calibration standards and the specificity of available intrapeptidyl citrulline antibodies. Based on our findings, we developed and validated a novel assay to quantify nucleosomal H3Cit in human plasma. RESULTS: We show that enzymatically citrullinated H3 proteins are compromised by high enzyme-dependent lot variability as well as instability in plasma. We furthermore demonstrate that the majority of commercially available antibodies against intrapeptidyl citrulline display poor specificity for their reported target when tested against a panel of semi-synthetic nucleosomes containing distinct histone H3 citrullinations. Finally, we present a novel assay utilizing highly specific monoclonal antibodies and semi-synthetic nucleosomes containing citrulline in place of arginine at histone H3, arginine residues 2, 8, and 17 (H3R2,8,17Cit) as calibration standards. Rigorous validation of this assay shows its capacity to accurately and reliably quantify nucleosomal H3Cit levels in human plasma with clear elevations in cancer patients compared to healthy individuals. CONCLUSIONS: Our novel approach using defined nucleosome controls enables reliable quantification of H3Cit in human plasma. This assay will be broadly applicable to study the role of histone citrullination in disease and its utility as a biomarker.


Asunto(s)
Trampas Extracelulares , Histonas , Bioensayo , Humanos , Nucleosomas , Plasma , Procesamiento Proteico-Postraduccional
5.
Sci Rep ; 9(1): 16891, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729453

RESUMEN

We introduce machine learning (ML) to perform classification and quantitation of images of nuclei from human blood neutrophils. Here we assessed the use of convolutional neural networks (CNNs) using free, open source software to accurately quantitate neutrophil NETosis, a recently discovered process involved in multiple human diseases. CNNs achieved >94% in performance accuracy in differentiating NETotic from non-NETotic cells and vastly facilitated dose-response analysis and screening of the NETotic response in neutrophils from patients. Using only features learned from nuclear morphology, CNNs can distinguish between NETosis and necrosis and between distinct NETosis signaling pathways, making them a precise tool for NETosis detection. Furthermore, by using CNNs and tools to determine object dispersion, we uncovered differences in NETotic nuclei clustering between major NETosis pathways that is useful in understanding NETosis signaling events. Our study also shows that neutrophils from patients with sickle cell disease were unresponsive to one of two major NETosis pathways. Thus, we demonstrate the design, performance, and implementation of ML tools for rapid quantitative and qualitative cell analysis in basic science.


Asunto(s)
Diagnóstico por Imagen/métodos , Trampas Extracelulares/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Neutrófilos/patología , Muerte Celular/fisiología , Humanos , Necrosis/metabolismo , Necrosis/patología , Redes Neurales de la Computación , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
6.
Sci Adv ; 4(11): eaav2623, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30498785

RESUMEN

Lysine methylation is a key regulator of histone protein function. Beyond histones, few connections have been made to the enzymes responsible for the deposition of these posttranslational modifications. Here, we debut a high-throughput functional proteomics platform that maps the sequence determinants of lysine methyltransferase (KMT) substrate selectivity without a priori knowledge of a substrate or target proteome. We demonstrate the predictive power of this approach for identifying KMT substrates, generating scaffolds for inhibitor design, and predicting the impact of missense mutations on lysine methylation signaling. By comparing KMT selectivity profiles to available lysine methylome datasets, we reveal a disconnect between preferred KMT substrates and the ability to detect these motifs using standard mass spectrometry pipelines. Collectively, our studies validate the use of this platform for guiding the study of lysine methylation signaling and suggest that substantial gaps exist in proteome-wide curation of lysine methylomes.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteoma/análisis , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Mutación Missense , Especificidad por Sustrato
7.
Mol Cell ; 72(1): 162-177.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30244833

RESUMEN

Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions). We find that many widely used antibodies poorly distinguish the methylforms and that high- and low-specificity reagents can yield dramatically different biological interpretations, resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms. Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation and promoter transcriptional output and can measure global PTM abundance changes. Our results illustrate how poor antibody specificity contributes to the "reproducibility crisis," demonstrating the need for rigorous, platform-appropriate validation.


Asunto(s)
Anticuerpos/genética , Inmunoprecipitación de Cromatina/métodos , Heterocromatina/genética , Histonas/genética , Anticuerpos/química , Anticuerpos/inmunología , Especificidad de Anticuerpos , Heterocromatina/química , Heterocromatina/inmunología , Código de Histonas/genética , Histonas/química , Histonas/inmunología , Humanos , Metilación , Nucleosomas/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética
8.
Proc Natl Acad Sci U S A ; 115(35): 8775-8780, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104358

RESUMEN

Mitotic inheritance of DNA methylation patterns is facilitated by UHRF1, a DNA- and histone-binding E3 ubiquitin ligase that helps recruit the maintenance DNA methyltransferase DNMT1 to replicating chromatin. The DNA methylation maintenance function of UHRF1 is dependent on its ability to bind chromatin, where it facilitates monoubiquitination of histone H3 at lysines 18 and 23, a docking site for DNMT1. Because of technical limitations, this model of UHRF1-dependent DNA methylation inheritance has been constructed largely based on genetics and biochemical observations querying methylated DNA oligonucleotides, synthetic histone peptides, and heterogeneous chromatin extracted from cells. Here, we construct semisynthetic mononucleosomes harboring defined histone and DNA modifications and perform rigorous analysis of UHRF1 binding and enzymatic activity with these reagents. We show that multivalent engagement of nucleosomal linker DNA and dimethylated lysine 9 on histone H3 directs UHRF1 ubiquitin ligase activity toward histone substrates. Notably, we reveal a molecular switch, stimulated by recognition of hemimethylated DNA, which redirects UHRF1 ubiquitin ligase activity away from histones in favor of robust autoubiquitination. Our studies support a noncompetitive model for UHRF1 and DNMT1 chromatin recruitment to replicating chromatin and define a role for hemimethylated linker DNA as a regulator of UHRF1 ubiquitin ligase substrate selectivity.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Cromatina , Metilación de ADN , Histonas , Modelos Biológicos , Ubiquitinación , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cromatina/química , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/química , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas
9.
Sci Rep ; 6: 28718, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27338245

RESUMEN

Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes - PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies.


Asunto(s)
Anticuerpos/química , Arginina/química , Biblioteca de Péptidos , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/química , Secuencias de Aminoácidos , Animales , Línea Celular , Mapeo Epitopo , Proteínas F-Box/química , Humanos , Metilación , Ratones , Proteínas Recombinantes/química , Proteínas Represoras/química , Transducción de Señal , Especificidad por Sustrato
10.
BMC Genomics ; 16: 769, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459857

RESUMEN

BACKGROUND: Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. METHODS: We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. RESULTS: Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. CONCLUSIONS: Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community.


Asunto(s)
Tipificación del Cuerpo/genética , Genoma de los Helmintos , Genómica , Planarias/fisiología , Regeneración/genética , Células Madre/metabolismo , alfa Carioferinas/genética , Animales , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genómica/métodos , Hibridación in Situ , Especificidad de Órganos , Interferencia de ARN , alfa Carioferinas/metabolismo
11.
PLoS Genet ; 10(10): e1004746, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25356635

RESUMEN

Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Neuronas , Planarias/genética , Regeneración/genética , Animales , Biología del Agua Dulce , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Planarias/crecimiento & desarrollo , Células Madre Pluripotentes , Interferencia de ARN , ARN Mensajero/genética
12.
Development ; 140(23): 4691-702, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24173799

RESUMEN

In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/fisiología , Planarias/metabolismo , Regeneración/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Estudio de Asociación del Genoma Completo , Datos de Secuencia Molecular , Neuronas/metabolismo , Planarias/embriología , Planarias/genética , Transducción de Señal , Células Madre/metabolismo
13.
Epigenetics ; 8(1): 79-91, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23235145

RESUMEN

Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5-1 and mll5-2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5-2 are required for regeneration and that set1, trr-1 and mll5-2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.


Asunto(s)
Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Familia de Multigenes , Planarias/citología , Planarias/genética , Células Madre/enzimología , Animales , Diferenciación Celular/genética , Proliferación Celular , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Metiltransferasas , Homeostasis/genética , Mitosis/genética , Fenotipo , Filogenia , Planarias/enzimología , Interferencia de ARN , Regeneración/genética , Células Madre/citología
14.
Dev Dyn ; 241(5): 901-10, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22411224

RESUMEN

BACKGROUND: Planarians are renowned for their capacity to replace lost tissues from adult pluripotent stem cells (neoblasts). Here we report that Lissencephaly-1 (lis1), which has roles in cellular processes such as mitotic spindle apparatus orientation and in signal regulation required for stem cell self-renewal, is required for stem cell maintenance in the planarian Schmidtea mediterranea. RESULTS: In planarians, lis1 is expressed in differentiated tissues and stem cells. lis1 RNAi leads to head regression, ventral curling, and death by lysis. By labeling the neoblasts and proliferating cells, we found lis1 knockdown animals show a dramatic increase in the number of mitotic cells, followed by depletion of the stem cell pool. Analysis of the mitotic spindles in dividing neoblasts revealed that defective spindle positioning is correlated with cells arrested at metaphase. In addition, we show that inhibiting a planarian homologue of nudE, predicted to encode a LIS-1 interacting protein, also leads to cell cycle progression defects. CONCLUSIONS: Our results provide evidence for a conserved role of LIS1 and NUDE in regulating the function of the mitotic spindle apparatus in a representative Lophotrochozoan and that planarians will be useful organisms in which to investigate LIS1 regulation of signaling events underlying stem cell self-renewal.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Planarias/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular , Células-Madre Neurales/citología , Planarias/citología , Interferencia de ARN , Huso Acromático/genética , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...