Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Signal ; 16(816): eadg5289, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113333

RESUMEN

Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.


Asunto(s)
Neoplasias Gástricas , Animales , Humanos , Ratones , Actinas , Guanosina Trifosfato , Quinasas p21 Activadas , Proteínas Proto-Oncogénicas p21(ras) , Receptor IGF Tipo 1 , Proteína de Unión al GTP rhoA/genética , Transducción de Señal , Neoplasias Gástricas/genética
2.
Cancer Res ; 83(24): 4112-4129, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934103

RESUMEN

Primary/intrinsic and treatment-induced acquired resistance limit the initial response rate to and long-term efficacy of direct inhibitors of the KRASG12C mutant in cancer. To identify potential mechanisms of resistance, we applied a CRISPR/Cas9 loss-of-function screen and observed loss of multiple components of the Hippo tumor suppressor pathway, which acts to suppress YAP1/TAZ-regulated gene transcription. YAP1/TAZ activation impaired the antiproliferative and proapoptotic effects of KRASG12C inhibitor (G12Ci) treatment in KRASG12C-mutant cancer cell lines. Conversely, genetic suppression of YAP1/WWTR1 (TAZ) enhanced G12Ci sensitivity. YAP1/TAZ activity overcame KRAS dependency through two distinct TEAD transcription factor-dependent mechanisms, which phenocopy KRAS effector signaling. First, TEAD stimulated ERK-independent transcription of genes normally regulated by ERK (BIRC5, CDC20, ECT2, FOSL1, and MYC) to promote progression through the cell cycle. Second, TEAD caused activation of PI3K-AKT-mTOR signaling to overcome apoptosis. G12Ci treatment-induced acquired resistance was also caused by YAP1/TAZ-TEAD activation. Accordingly, concurrent treatment with pharmacologic inhibitors of TEAD synergistically enhanced KRASG12C inhibitor antitumor activity in vitro and prolonged tumor suppression in vivo. In summary, these observations reveal YAP1/TAZ-TEAD signaling as a crucial driver of primary and acquired resistance to KRAS inhibition and support the use of TEAD inhibitors to enhance the antitumor efficacy of KRAS-targeted therapies. SIGNIFICANCE: YAP1/TAZ-TEAD activation compensates for loss of KRAS effector signaling, establishing a mechanistic basis for concurrent inhibition of TEAD to enhance the efficacy of KRASG12C-selective inhibitor treatment of KRASG12C-mutant cancers. See related commentary by Johnson and Haigis, p. 4005.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Factores de Transcripción de Dominio TEA , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transactivadores/metabolismo , Proteínas Señalizadoras YAP , Factores de Transcripción de Dominio TEA/antagonistas & inhibidores
3.
Int J Equity Health ; 22(1): 121, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37381010

RESUMEN

BACKGROUND: The enduring threat of maternal mortality to health worldwide and in the Americas has been recognized in the global and regional agendas and their targets to 2030. To inform the direction and amount of effort needed to meet those targets, a set of equity-sensitive regional scenarios of maternal mortality ratio (MMR) reduction based on its tempo or speed of change from baseline year 2015 was developed. METHODS: Regional scenarios by 2030 were defined according to: i) the MMR average annual rate of reduction (AARR) needed to meet the global (70 per 100,000) or regional (30 per 100,000) targets and, ii) the horizontal (proportional) or vertical (progressive) equity criterion applied to the cross-country AARR distribution (i.e., same speed to all countries or faster for those with higher baseline MMR). MMR average and inequality gaps -absolute (AIG), and relative (RIG)- were scenario outcomes. RESULTS: At baseline, MMR was 59.2 per 100,000; AIG was 313.4 per 100,000 and RIG was 19.0 between countries with baseline MMR over twice the global target and those below the regional target. The AARR needed to meet the global and regional targets were -7.60% and -4.54%, respectively; baseline AARR was -1.55%. In the regional MMR target attainment scenario, applying horizontal equity would decrease AIG to 158.7 per 100,000 and RIG will remain invariant; applying vertical equity would decrease AIG to 130.9 per 100,000 and RIG would decrease to 13.5 by 2030. CONCLUSION: The dual challenge of reducing maternal mortality and abating its inequalities will demand hefty efforts from countries of the Americas. This remains true to their collective 2030 MMR target while leaving no one behind. These efforts should be mainly directed towards significantly speeding up the tempo of the MMR reduction and applying sensible progressivity, targeting on groups and territories with higher MMR and greater social vulnerabilities, especially in a post-pandemic regional context.


Asunto(s)
Mortalidad Materna , Humanos , Américas/epidemiología , Femenino
4.
Genes Cancer ; 14: 30-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923647

RESUMEN

We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth in vitro. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (VCP) as an essential gene in KRAS-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in KRAS-mutant PDAC.

5.
Cancer Discov ; 13(1): 19-22, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36620884

RESUMEN

SUMMARY: In this issue, Hattori and colleagues capitalized on targeted small-molecule covalent inhibitors of one KRAS mutant with a G12C substitution and of other oncoproteins to create drug-peptide conjugates that serve as cancer neoantigens that prompt an immune response to oncogene-mutant cancer cells. This immunotherapy strategy can serve as an effective approach to overcome the treatment-induced resistance that limits the effectiveness of essentially all small molecule-based targeted anticancer drugs. See related article by Hattori et al., p. 132 (9).


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
6.
Cancer Res ; 83(1): 141-157, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36346366

RESUMEN

Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
7.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36194492

RESUMEN

Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized.


Asunto(s)
Antiinfecciosos , Fibrosis Quística , Ratones , Animales , Pseudomonas aeruginosa/genética , Poliaminas/metabolismo , Espermidina/metabolismo , Pruebas de Sensibilidad Microbiana , Fibrosis Quística/tratamiento farmacológico , Antiinfecciosos/metabolismo
8.
Sci Signal ; 15(746): eabn2694, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944066

RESUMEN

Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Actinas , Carcinoma Ductal Pancreático/genética , GTP Fosfohidrolasas/genética , Humanos , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas
9.
Mol Cancer Ther ; 21(5): 762-774, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247914

RESUMEN

Human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is a common cancer worldwide with an unmet need for more effective, less toxic treatments. Currently, both the disease and the treatment of HNSCC cause significant mortality and morbidity. Targeted therapies hold new promise for patients with HPV-negative status whose tumors harbor oncogenic HRAS mutations. Recent promising clinical results have renewed interest in the development of farnesyltransferase inhibitors (FTIs) as a therapeutic strategy for HRAS-mutant cancers. With the advent of clinical evaluation of the FTI tipifarnib for the treatment of HRAS-mutant HNSCC, we investigated the activity of tipifarnib and inhibitors of HRAS effector signaling in HRAS-mutant HNSCC cell lines. First, we validated that HRAS is a cancer driver in HRAS-mutant HNSCC lines. Second, we showed that treatment with the FTI tipifarnib largely phenocopied HRAS silencing, supporting HRAS as a key target of FTI antitumor activity. Third, we performed reverse-phase protein array analyses to profile FTI treatment-induced changes in global signaling, and conducted CRISPR/Cas9 genetic loss-of-function screens to identify previously unreported genes and pathways that modulate sensitivity to tipifarnib. Fourth, we determined that concurrent inhibition of HRAS effector signaling (ERK, PI3K, mTORC1) increased sensitivity to tipifarnib treatment, in part by overcoming tipifarnib-induced compensatory signaling. We also determined that ERK inhibition could block tipifarnib-induced epithelial-to-mesenchymal transition, providing a potential basis for the effectiveness of this combination. Our results support future investigations of these and other combination treatments for HRAS mutant HNSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Farnesiltransferasa/metabolismo , Farnesiltransferasa/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
10.
Adv Cancer Res ; 153: 101-130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35101228

RESUMEN

Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
11.
Bull World Health Organ ; 100(1): 40-49, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017756

RESUMEN

OBJECTIVE: To assess the availability and gaps in data for measuring progress towards health-related sustainable development goals and other targets in selected low- and middle-income countries. METHODS: We used 14 international population surveys to evaluate the health data systems in the 47 least developed countries over the years 2015-2020. We reviewed the survey instruments to determine whether they contained tools that could be used to measure 46 health-related indicators defined by the World Health Organization. We recorded the number of countries with data available on the indicators from these surveys. FINDINGS: Twenty-seven indicators were measurable by the surveys we identified. The two health emergency indicators were not measurable by current surveys. The percentage of countries that used surveys to collect data over 2015-2020 were lowest for tuberculosis (2/47; 4.3%), hepatitis B (3/47; 6.4%), human immunodeficiency virus (11/47; 23.4%), child development status and child abuse (both 13/47; 27.7%), compared with safe drinking water (37/47; 78.7%) and births attended by skilled health personnel (36/47; 76.6%). Nineteen countries collected data on 21 or more indicators over 2015-2020 while nine collected data on no indicators; over 2018-2020 these numbers reduced to six and 20, respectively. CONCLUSION: Examining selected international surveys provided a quick summary of health data available in the 47 least developed countries. We found major gaps in health data due to long survey cycles and lack of appropriate survey instruments. Novel indicators and survey instruments would be needed to track the fast-changing situation of health emergencies.


Asunto(s)
Países en Desarrollo , Objetivos , Niño , Humanos , Renta , Desarrollo Sostenible , Organización Mundial de la Salud
12.
Cancer Res ; 82(1): 90-104, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34737214

RESUMEN

ECT2 is an activator of RHO GTPases that is essential for cytokinesis. In addition, ECT2 was identified as an oncoprotein when expressed ectopically in NIH/3T3 fibroblasts. However, oncogenic activation of ECT2 resulted from N-terminal truncation, and such truncated ECT2 proteins have not been found in patients with cancer. In this study, we observed elevated expression of full-length ECT2 protein in preneoplastic colon adenomas, driven by increased ECT2 mRNA abundance and associated with APC tumor-suppressor loss. Elevated ECT2 levels were detected in the cytoplasm and nucleus of colorectal cancer tissue, suggesting cytoplasmic mislocalization as one mechanism of early oncogenic ECT2 activation. Importantly, elevated nuclear ECT2 correlated with poorly differentiated tumors, and a low cytoplasmic:nuclear ratio of ECT2 protein correlated with poor patient survival, suggesting that nuclear and cytoplasmic ECT2 play distinct roles in colorectal cancer. Depletion of ECT2 reduced anchorage-independent cancer cell growth and invasion independent of its function in cytokinesis, and loss of Ect2 extended survival in a Kras G12D Apc-null colon cancer mouse model. Expression of ECT2 variants with impaired nuclear localization or guanine nucleotide exchange catalytic activity failed to restore cancer cell growth or invasion, indicating that active, nuclear ECT2 is required to support tumor progression. Nuclear ECT2 promoted ribosomal DNA transcription and ribosome biogenesis in colorectal cancer. These results support a driver role for both cytoplasmic and nuclear ECT2 overexpression in colorectal cancer and emphasize the critical role of precise subcellular localization in dictating ECT2 function in neoplastic cells. SIGNIFICANCE: ECT2 overexpression and mislocalization support its role as a driver in colon cancer that is independent from its function in normal cell cytokinesis.


Asunto(s)
Neoplasias Colorrectales/genética , Genómica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Anciano , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones
13.
Cancer Res ; 82(4): 586-598, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34921013

RESUMEN

The aggressive nature of pancreatic ductal adenocarcinoma (PDAC) mandates the development of improved therapies. As KRAS mutations are found in 95% of PDAC and are critical for tumor maintenance, one promising strategy involves exploiting KRAS-dependent metabolic perturbations. The macrometabolic process of autophagy is upregulated in KRAS-mutant PDAC, and PDAC growth is reliant on autophagy. However, inhibition of autophagy as monotherapy using the lysosomal inhibitor hydroxychloroquine (HCQ) has shown limited clinical efficacy. To identify strategies that can improve PDAC sensitivity to HCQ, we applied a CRISPR-Cas9 loss-of-function screen and found that a top sensitizer was the receptor tyrosine kinase (RTK) insulin-like growth factor 1 receptor (IGF1R). Additionally, reverse phase protein array pathway activation mapping profiled the signaling pathways altered by chloroquine (CQ) treatment. Activating phosphorylation of RTKs, including IGF1R, was a common compensatory increase in response to CQ. Inhibition of IGF1R increased autophagic flux and sensitivity to CQ-mediated growth suppression both in vitro and in vivo. Cotargeting both IGF1R and pathways that antagonize autophagy, such as ERK-MAPK axis, was strongly synergistic. IGF1R and ERK inhibition converged on suppression of glycolysis, leading to enhanced dependence on autophagy. Accordingly, concurrent inhibition of IGF1R, ERK, and autophagy induced cytotoxicity in PDAC cell lines and decreased viability in human PDAC organoids. In conclusion, targeting IGF1R together with ERK enhances the effectiveness of autophagy inhibitors in PDAC. SIGNIFICANCE: Compensatory upregulation of IGF1R and ERK-MAPK signaling limits the efficacy of autophagy inhibitors chloroquine and hydroxychloroquine, and their concurrent inhibition synergistically increases autophagy dependence and chloroquine sensitivity in pancreatic ductal adenocarcinoma.


Asunto(s)
Autofagia/fisiología , Carcinoma Ductal Pancreático/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias Pancreáticas/metabolismo , Receptor IGF Tipo 1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Hidroxicloroquina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Pirazoles/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Triazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
15.
Cell Rep ; 37(9): 110060, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852220

RESUMEN

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Daño del ADN , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Science ; 374(6564): 152-153, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618580

RESUMEN

A newly identified regulator increases the efficacy of a new class of targeted anti-RAS drugs.

17.
J Biol Chem ; 297(5): 101335, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688654

RESUMEN

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-ß1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación , Neoplasias Pancreáticas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
18.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544135

RESUMEN

Using model organisms to identify novel therapeutic targets is frequently constrained by pre-existing genetic toolkits. To expedite positive selection for identification of novel downstream effectors, we engineered conditional expression of activated CED-10/Rac to disrupt Caenorhabditis elegans embryonic morphogenesis, titrated to 100% lethality. The strategy of engineering thresholds for positive selection using experimental animals was validated with pharmacological and genetic suppression and is generalizable to diverse molecular processes and experimental systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética
19.
Cell Rep ; 35(13): 109291, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192548

RESUMEN

To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-ß-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the ßIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetamidas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Calpaína/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Semivida , Humanos , Microtúbulos/efectos de los fármacos , Morfolinas/farmacología , Mutación/genética , Organoides/efectos de los fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/farmacología , Transcripción Genética/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
20.
ACS Pharmacol Transl Sci ; 4(2): 703-712, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860195

RESUMEN

Oncogenic mutations in the KRAS gene are well-established drivers of cancer. While the recently developed KRASG12C inhibitors offer a targeted KRAS therapy and have shown success in the clinic, KRASG12C represents only 11% of all KRAS mutations. Current therapeutic approaches for all other KRAS mutations are both indirect and nonmutant-selective, largely focusing on inhibition of downstream KRAS effectors such as MAP kinases. Inhibition of KRAS downstream signaling results in a system-wide down-modulation of the respective targets, raising concerns about systemic cell toxicity. Here, we describe a custom short interfering RNA oligonucleotide (EFTX-D1) designed to preferentially bind mRNA of the most commonly occurring KRAS missense mutations in codons 12 and 13. We determined that EFTX-D1 preferentially reduced the mutant KRAS sequence versus wild-type at the levels of both transcription and translation and reversed oncogenic KRAS-induced morphologic and growth transformation. Furthermore, EFTX-D1 significantly impaired the proliferation of several KRAS mutant cancer cell lines in 2-D as well as 3-D assays. Taken together, our data indicate a novel use of RNA interference to target oncogenic KRAS-driven cancers specifically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...