Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Nat Commun ; 15(1): 3352, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688933

RESUMEN

Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.


Asunto(s)
Altitud , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Selección Genética , Papúa Nueva Guinea , Humanos , Genoma Humano , Genética de Población
2.
Cell Rep ; 42(11): 113346, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917587

RESUMEN

Borneo was a crossroad of ancient dispersals, with some of the earliest Southeast Asian human remains and rock art. The island is home to traditionally hunter-gatherer Punan communities, whose origins, whether of subsistence reversion or long-term foraging, are unclear. The connection between its past and present-day agriculturalist inhabitants, who currently speak Austronesian languages and have composite and complex genetic ancestry, is equally opaque. Here, we analyze the genetic ancestry of the northeastern Bornean Punan Batu (who still practice some mobile hunting and gathering), Tubu, and Aput. We find deep ancestry connections, with a shared Asian signal outgrouping modern and ancient Austronesian-ancestry proxies, suggesting a time depth of more than 7,500 years. They also largely lack the mainland Southeast Asian signals of agricultural Borneans, who are themselves genetically heterogeneous. Our results support long-term inhabitation of Borneo by some Punan ancestors and reveal unexpected complexity in the origins and dispersal of Austronesian-expansion-related ancestry.


Asunto(s)
Pueblo Asiatico , Genética de Población , Lenguaje , Humanos , Pueblo Asiatico/genética , Borneo
3.
Fungal Genet Biol ; 169: 103827, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640199

RESUMEN

Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.


Asunto(s)
Proteínas Fúngicas , Genes Fúngicos , Secuencia de Aminoácidos , Genes Fúngicos/genética , Proteínas Fúngicas/genética , Botrytis/genética
4.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640765

RESUMEN

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Asunto(s)
Especies en Peligro de Extinción , Loros , Humanos , Animales , Genómica , Genoma , Nueva Zelanda
6.
PLoS Genet ; 18(12): e1010470, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480515

RESUMEN

Modern humans have admixed with multiple archaic hominins. Papuans, in particular, owe up to 5% of their genome to Denisovans, a sister group to Neanderthals whose remains have only been identified in Siberia and Tibet. Unfortunately, the biological and evolutionary significance of these introgression events remain poorly understood. Here we investigate the function of both Denisovan and Neanderthal alleles characterised within a set of 56 genomes from Papuan individuals. By comparing the distribution of archaic and non-archaic variants we assess the consequences of archaic admixture across a multitude of different cell types and functional elements. We observe an enrichment of archaic alleles within cis-regulatory elements and transcribed regions of the genome, with Denisovan variants strongly affecting elements active within immune-related cells. We identify 16,048 and 10,032 high-confidence Denisovan and Neanderthal variants that fall within annotated cis-regulatory elements and with the potential to alter the affinity of multiple transcription factors to their cognate DNA motifs, highlighting a likely mechanism by which introgressed DNA can impact phenotypes. Lastly, we experimentally validate these predictions by testing the regulatory potential of five Denisovan variants segregating within Papuan individuals, and find that two are associated with a significant reduction of transcriptional activity in plasmid reporter assays. Together, these data provide support for a widespread contribution of archaic DNA in shaping the present levels of modern human genetic diversity, with different archaic ancestries potentially affecting multiple phenotypic traits within non-Africans.


Asunto(s)
Evolución Molecular , Hominidae , Sistema Inmunológico , Hombre de Neandertal , Humanos , Hominidae/genética , Hombre de Neandertal/genética , Papúa Nueva Guinea
7.
Front Microbiol ; 13: 1038444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406440

RESUMEN

Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.

8.
BMC Biol ; 20(1): 246, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329441

RESUMEN

BACKGROUND: Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS: We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS: Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.


Asunto(s)
Ascomicetos , Malus , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Hongos del Género Venturia , Malus/genética , Malus/microbiología
9.
iScience ; 25(12): 105470, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36404926

RESUMEN

Kakapo are a critically endangered species of parrots restricted to a few islands off the coast of New Zealand. Kakapo are very closely monitored, especially during nesting seasons. In 2019, during a highly successful nesting season, an outbreak of aspergillosis affected 21 individuals and led to the deaths of 9, leaving a population of only 211 kakapo. In monitoring this outbreak, cultures of aspergillus were grown, and genome sequenced. These sequences demonstrate that, very unusually for an aspergillus outbreak, a single strain of aspergillus caused the outbreak. This strain was found on two islands, but only one had an outbreak of aspergillosis; indicating that the strain was necessary, but not sufficient, to cause disease. Our analysis provides an understanding of the 2019 outbreak and provides potential ways to manage such events in the future.

10.
J Fungi (Basel) ; 8(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35887427

RESUMEN

Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the striking distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most occurring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.

11.
J Evol Biol ; 35(8): 1126-1137, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35830478

RESUMEN

Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near-instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome-wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans-acting cross-talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high-level expression outcomes, regardless of the particular species or kingdom.


Asunto(s)
Hibridación Genética , Transcriptoma , Animales , Eucariontes/genética , Genoma , Ploidias
12.
iScience ; 25(7): 104583, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35880026

RESUMEN

As human populations left Asia to first settle in Oceania around 50,000 years ago, they entered a territory ecologically separated from the Old World for millions of years. We analyzed genomic data of 239 modern Oceanian individuals to detect and date signals of selection specific to this region. Combining both relative and absolute dating approaches, we identified a strong selection pattern between 52,000 and 54,000 years ago in the genomes of descendants of the first settlers of Sahul. This strikingly corresponds to the dates of initial settlement as inferred from archaeological evidence. Loci under selection during this period, some showing enrichment in Denisovan ancestry, overlap genes involved in the immune response and diet, especially based on plants. Pathogens and natural resources, especially from endemic plants, therefore appear to have acted as strong selective pressures on the genomes of the first settlers of Sahul.

13.
BMC Biol ; 20(1): 144, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706021

RESUMEN

BACKGROUND: Fungi exhibit astonishing diversity with multiple major phenotypic transitions over the kingdom's evolutionary history. As part of this process, fungi developed hyphae, adapted to land environments (terrestrialization), and innovated their sexual structures. These changes also helped fungi establish ecological relationships with other organisms (animals and plants), but the genomic basis of these changes remains largely unknown. RESULTS: By systematically analyzing 304 genomes from all major fungal groups, together with a broad range of eukaryotic outgroups, we have identified 188 novel orthogroups associated with major changes during the evolution of fungi. Functional annotations suggest that many of these orthogroups were involved in the formation of key trait innovations in extant fungi and are functionally connected. These innovations include components for cell wall formation, functioning of the spindle pole body, polarisome formation, hyphal growth, and mating group signaling. Innovation of mitochondria-localized proteins occurred widely during fungal transitions, indicating their previously unrecognized importance. We also find that prokaryote-derived horizontal gene transfer provided a small source of evolutionary novelty with such genes involved in key metabolic pathways. CONCLUSIONS: The overall picture is one of a relatively small number of novel genes appearing at major evolutionary transitions in the phylogeny of fungi, with most arising de novo and horizontal gene transfer providing only a small additional source of evolutionary novelty. Our findings contribute to an increasingly detailed portrait of the gene families that define fungal phyla and underpin core features of extant fungi.


Asunto(s)
Evolución Molecular , Hongos , Animales , Hongos/genética , Transferencia de Gen Horizontal , Filogenia , Plantas/genética
15.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35294555

RESUMEN

Island Southeast Asia (ISEA) and Oceania host one of the world's richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region's male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region's initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40-25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world's least understood regions.


Asunto(s)
Pueblo Asiatico , ADN Mitocondrial , Asia Sudoriental , ADN Mitocondrial/genética , Humanos , Masculino , Mitocondrias/genética , Filogenia
16.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191483

RESUMEN

Fungi from the genus Epichloë form systemic endobiotic infections of cool season grasses, producing a range of host-protective natural products in return for access to nutrients. These infections are asymptomatic during vegetative host growth, with associations between asexual Epichloë spp. and their hosts considered mutualistic. However, the sexual cycle of Epichloë spp. involves virulent growth, characterized by the envelopment and sterilization of a developing host inflorescence by a dense sheath of mycelia known as a stroma. Microscopic analysis of stromata revealed a dramatic increase in hyphal propagation and host degradation compared with asymptomatic tissues. RNAseq was used to identify differentially expressed genes in asymptomatic vs stromatized tissues from 3 diverse Epichloë-host associations. Comparative analysis identified a core set of 135 differentially expressed genes that exhibited conserved transcriptional changes across all 3 associations. The core differentially expressed genes more strongly expressed during virulent growth encode proteins associated with host suppression, digestion, adaptation to the external environment, a biosynthetic gene cluster, and 5 transcription factors that may regulate Epichloë stroma formation. An additional 5 transcription factor encoding differentially expressed genes were suppressed during virulent growth, suggesting they regulate mutualistic processes. Expression of biosynthetic gene clusters for natural products that suppress herbivory was universally suppressed during virulent growth, and additional biosynthetic gene clusters that may encode production of novel host-protective natural products were identified. A comparative analysis of 26 Epichloë genomes found a general decrease in core differentially expressed gene conservation among asexual species, and a specific decrease in conservation for the biosynthetic gene cluster expressed during virulent growth and an unusual uncharacterized gene.


Asunto(s)
Epichloe , Animales , Epichloe/genética , Estadios del Ciclo de Vida , Poaceae/genética , Simbiosis/genética , Transcriptoma
17.
IMA Fungus ; 13(1): 2, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35109929

RESUMEN

Here we describe a new, haploid and stroma forming species within the genus Epichloë, as Epichloë scottii sp. nov. The fungus was isolated from Melica uniflora growing in Bad Harzburg, Germany. Phylogenetic reconstruction using a combined dataset of the tubB and tefA genes strongly support that E. scottii is a distinct species and the so far unknown ancestor species of the hybrid E. disjuncta. A distribution analysis showed a high infection rate in close vicinity of the initial sampling site and only two more spots with low infection rates. Genetic variations in key genes required for alkaloid production suggested that E. scottii sp. nov. might not be capable of producing any of the major alkaloids including ergot alkaloid, loline, indole-diterpene and peramine. All isolates and individuals found in the distribution analysis were identified as mating-type B explaining the lack of mature stromata during this study. We further release a telomere-to-telomere de novo assembly of all seven chromosomes and the mitogenome of E. scottii sp. nov.

18.
Evol Hum Sci ; 4: e9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37588920

RESUMEN

Theories of early cooperation in human society often draw from a small sample of ethnographic studies of surviving populations of hunter-gatherers, most of which are now sedentary. Borneo hunter-gatherers (Punan, Penan) have seldom figured in comparative research because of a decades-old controversy about whether they are the descendants of farmers who adopted a hunting and gathering way of life. In 2018 we began an ethnographic study of a group of still-nomadic hunter-gatherers who call themselves Punan Batu (Cave Punan). Our genetic analysis clearly indicates that they are very unlikely to be the descendants of neighbouring agriculturalists. They also preserve a song language that is unrelated to other languages of Borneo. Dispersed travelling groups of Punan Batu with fluid membership use message sticks to stay in contact, co-operate and share resources as they journey between rock shelters and forest camps. Message sticks were once widespread among nomadic Punan in Borneo, but have largely disappeared in sedentary Punan villages. Thus the small community of Punan Batu offers a rare glimpse of a hunting and gathering way of life that was once widespread in the forests of Borneo, where prosocial behaviour extended beyond the face-to-face community, facilitating successful collective adaptation to the diverse resources of Borneo's forests.

19.
Am J Hum Genet ; 109(1): 50-65, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34919805

RESUMEN

Lack of diversity in human genomics limits our understanding of the genetic underpinnings of complex traits, hinders precision medicine, and contributes to health disparities. To map genetic effects on gene regulation in the underrepresented Indonesian population, we have integrated genotype, gene expression, and CpG methylation data from 115 participants across three island populations that capture the major sources of genomic diversity in the region. In a comparison with European datasets, we identify eQTLs shared between Indonesia and Europe as well as population-specific eQTLs that exhibit differences in allele frequencies and/or overall expression levels between populations. By combining local ancestry and archaic introgression inference with eQTLs and methylQTLs, we identify regulatory loci driven by modern Papuan ancestry as well as introgressed Denisovan and Neanderthal variation. GWAS colocalization connects QTLs detected here to hematological traits, and further comparison with European datasets reflects the poor overall transferability of GWAS statistics across diverse populations. Our findings illustrate how population-specific genetic architecture, local ancestry, and archaic introgression drive variation in gene regulation across genetically distinct and in admixed populations and highlight the need for performing association studies on non-European populations.


Asunto(s)
Regulación de la Expresión Génica , Genética de Población , Genoma Humano , Sitios de Carácter Cuantitativo , Biología Computacional/métodos , Metilación de ADN , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Indonesia , Masculino , Modelos Genéticos , Anotación de Secuencia Molecular , Herencia Multifactorial , Carácter Cuantitativo Heredable , Selección Genética , Secuenciación Completa del Genoma
20.
Genomics ; 113(6): 4267-4275, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34774981

RESUMEN

Epichloe fungi are endophytes of cool season grasses, both wild species and commercial cultivars, where they may exhibit mutualistic or pathogenic lifestyles. The Epichloe-grass symbiosis is of great interest to agricultural research for the fungal bioprotective properties conferred to host grasses but also serves as an ideal system to study the evolution of fungal plant-pathogens in natural environments. Here, we assembled and annotated gapless chromosome-level genomes of two pathogenic Epichloe sibling species. Both genomes have a bipartite genome organization, with blocks of highly syntenic gene-rich regions separated by blocks of AT-rich DNA. The AT-rich regions show an extensive signature of RIP (repeat-induced point mutation) and the expansion of this compartment accounts for the large difference in genome size between the two species. This study reveals how the rapid evolution of repeat structure can drive divergence between closely related taxa and highlights the evolutionary role of dynamic compartments in fungal genomes.


Asunto(s)
Epichloe , Cromosomas , Endófitos/genética , Epichloe/genética , Evolución Molecular , Genoma Fúngico , Poaceae/genética , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...