Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(5)2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793694

RESUMEN

White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.


Asunto(s)
Acuicultura , Interacciones Huésped-Patógeno , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Virus del Síndrome de la Mancha Blanca 1/fisiología , Virus del Síndrome de la Mancha Blanca 1/patogenicidad , Animales , Penaeidae/virología , Modelos Animales de Enfermedad
2.
Viruses ; 15(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37766231

RESUMEN

White spot disease (WSD) is a severe viral threat to the global shrimp aquaculture industry. However, little is known about white spot syndrome virus (WSSV) transmission dynamics. Our aim was to elucidate this in Litopenaeus vannamei using peroral in vivo WSSV challenge experiments. We demonstrated that WSD progression was rapid and irreversible, leading to death within 78 h. Viral DNA shedding was detected within 6 h of disease onset. This shedding intensified over time, reaching a peak within 12 h of the time of death. Isolating shrimp (clinically healthy and diseased) from infected populations at different time points post-inoculation showed that host-to-host WSSV transmission was occurring around the time of death. Exposing sentinels to environmental components (i.e., water, feces, molts) collected from tanks housing WSSV-infected shrimp resulted in a significantly (p-value < 0.05) increased infection risk after exposure to water (1.0) compared to the risk of infection after exposure to feces (0.2) or molts (0.0). Furthermore, ingestion of WSSV-infected tissues (cannibalism) did not cause a significantly higher number of WSD cases compared to immersion in water in which the same degree of cannibalism had taken place.

3.
Front Cell Infect Microbiol ; 11: 645248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996628

RESUMEN

Extracellular matrix (ECM) degrading enzymes produced by Clostridium perfringens may play an important role during the initial phases of avian necrotic enteritis by facilitating toxin entry in the intestinal mucosa and destruction of the tissue. C. perfringens is known to produce several ECM-degrading proteases, such as kappa toxin, an extracellular collagenase that is encoded by the colA gene. In this study, the colA gene sequence of a collection of 48 C. perfringens strains, including pathogenic (i.e. toxinotype G) and commensal (i.e. toxinotype A) chicken derived strains and strains originating from other host species, was analyzed. Although the colA gene showed a high level of conservation (>96% nucleotide sequence identity), several gene variants carrying different nonsense mutations in the colA gene were identified, leading to the definition of four truncated collagenase variant types (I-IV). Collagenase variant types I, III and IV have a (nearly) complete collagenase unit but lack parts of the C-terminal recruitment domains, whereas collagenase variant types II misses the N-terminal part of collagenase unit. Gene fragments encoding a truncated collagenase were mainly linked with necrotic enteritis associated C. perfringens type G strains with collagenase variant types I and II being the most prevalent types. Gelatin zymography revealed that both recombinant full-length and variant type I collagenase have active auto-cleavage products. Moreover, both recombinant fragments were capable of degrading type I as well as type IV collagen, although variant type I collagenase showed a higher relative activity against collagen type IV as compared to full-length collagenase. Consequently, these smaller truncated collagenases might be able to break down collagen type IV in the epithelial basement membrane of the intestinal villi and so contribute to the initiation of the pathological process leading to necrotic enteritis.


Asunto(s)
Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Animales , Pollos , Clostridium perfringens , Colagenasas
4.
Vet Res ; 51(1): 100, 2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32771049

RESUMEN

Matrix metalloproteinases (MMPs) play an important role in intestinal extracellular matrix homeostasis. An overexpression of MMPs results in tissue destruction and local inflammation and has been associated with multiple inflammatory diseases. These host proteases might also be important in tissue damage caused by infectious agents, such as in intestinal damage in Clostridium perfringens-induced avian necrotic enteritis (NE). The aim of the present study was to elucidate the effect of a C. perfringens infection on the MMP activity in the small intestine of birds with a pre-disposing coccidial infection to obtain a more thorough understanding of the pathogenesis of NE. For this purpose, the gelatinolytic activity present in jejunal tissue of Eimeria infected birds which were challenged with either a pathogenic C. perfringens type G strain or a commensal C. perfringens type A strain was analyzed using substrate zymography. The results show that infection of broilers with Eimeria and different C. perfringens strains, independent of their pathogenicity, decreases the expression of a 40-45 kDa host collagenase in the jejunum, as compared to the expression in Eimeria-infected control birds. It was also shown that the expression of 2 MMPs with molecular weights of approximately 50-60 and 60-70 kDa was significantly lower in necrotic tissue as compared to the activity in macroscopically healthy tissue adjacent to the lesion. These results indicate that host collagenases are not elicited by the C. perfringens infection for permeabilizing the host mucosa to allow penetration of the NetB toxin in Eimeria infected broilers.


Asunto(s)
Pollos , Infecciones por Clostridium/veterinaria , Coccidiosis/veterinaria , Mucosa Intestinal/enzimología , Yeyuno/enzimología , Metaloproteinasas de la Matriz/metabolismo , Enfermedades de las Aves de Corral/metabolismo , Animales , Infecciones por Clostridium/metabolismo , Infecciones por Clostridium/microbiología , Clostridium perfringens/fisiología , Coccidiosis/metabolismo , Coccidiosis/parasitología , Eimeria/fisiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/parasitología , Yeyuno/microbiología , Yeyuno/parasitología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...