Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7204, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938574

RESUMEN

Understanding stability-whether a community will eventually return to its original state after a perturbation-is a major focus in the study of various complex systems, particularly complex ecosystems. Here, we challenge this focus, showing that short-term dynamics can be a better predictor of outcomes for complex ecosystems. Using random matrix theory, we study how complex ecosystems behave immediately after small perturbations. Our analyses show that many communities are expected to be 'reactive', whereby some perturbations will be amplified initially and generate a response that is directly opposite to that predicted by typical stability measures. In particular, we find reactivity is prevalent for complex communities of mixed interactions and for structured communities, which are both expected to be common in nature. Finally, we show that reactivity can be a better predictor of extinction risk than stability, particularly when communities face frequent perturbations, as is increasingly common. Our results suggest that, alongside stability, reactivity is a fundamental measure for assessing ecosystem health.


Asunto(s)
Ecosistema
2.
Nat Ecol Evol ; 7(10): 1610-1619, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37592022

RESUMEN

What drives the stability, or instability, of complex ecosystems? This question sits at the heart of community ecology and has motivated a large body of theoretical work exploring how community properties shape ecosystem dynamics. However, the overwhelming majority of current theory assumes that species interactions are instantaneous, meaning that changes in the abundance of one species will lead to immediate changes in the abundances of its partners. In practice, time delays in how species respond to one another are widespread across ecological contexts, yet the impact of these delays on ecosystems remains unclear. Here we derive a new body of theory to comprehensively study the impact of time delays on ecological stability. We find that time delays are important for ecosystem stability. Large delays are typically destabilizing but, surprisingly, short delays can substantially increase community stability. Moreover, in stark contrast to delay-free systems, delays dictate that communities with more abundant species can be less stable than ones with less abundant species. Finally, we show that delays fundamentally shift how species interactions impact ecosystem stability, with communities of mixed interaction types becoming the most stable class of ecosystem. Our work demonstrates that time delays can be critical for the stability of complex ecosystems.


Asunto(s)
Ecosistema
3.
Cell Host Microbe ; 31(8): 1249-1251, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562357

RESUMEN

Two recent papers published in Cell highlight the power of both top-down and bottom-up approaches to understanding the gut microbiome. The first uses ultra-deep sequencing to identify patterns across a gradient of human industrialization, while the second uses synthetic communities to determine how strain interactions impact microbiome structure and function.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos
4.
PLoS Biol ; 20(11): e3001847, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350849

RESUMEN

Genes encoding resistance to stressors, such as antibiotics or environmental pollutants, are widespread across microbiomes, often encoded on mobile genetic elements. Yet, despite their prevalence, the impact of resistance genes and their mobility upon the dynamics of microbial communities remains largely unknown. Here we develop eco-evolutionary theory to explore how resistance genes alter the stability of diverse microbiomes in response to stressors. We show that adding resistance genes to a microbiome typically increases its overall stability, particularly for genes on mobile genetic elements with high transfer rates that efficiently spread resistance throughout the community. However, the impact of resistance genes upon the stability of individual taxa varies dramatically depending upon the identity of individual taxa, the mobility of the resistance gene, and the network of ecological interactions within the community. Nonmobile resistance genes can benefit susceptible taxa in cooperative communities yet damage those in competitive communities. Moreover, while the transfer of mobile resistance genes generally increases the stability of previously susceptible recipient taxa to perturbation, it can decrease the stability of the originally resistant donor taxon. We confirmed key theoretical predictions experimentally using competitive soil microcosm communities. Here the stability of a susceptible microbial community to perturbation was increased by adding mobile resistance genes encoded on conjugative plasmids but was decreased when these same genes were encoded on the chromosome. Together, these findings highlight the importance of the interplay between ecological interactions and horizontal gene transfer in driving the eco-evolutionary dynamics of diverse microbiomes.


Asunto(s)
Transferencia de Gen Horizontal , Microbiota , Transferencia de Gen Horizontal/genética , Microbiota/genética , Antibacterianos/uso terapéutico , Plásmidos/genética
5.
Frontline Gastroenterol ; 13(e1): e13-e21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812026

RESUMEN

The gut microbiota is known to play an important role in maintaining gut health through a symbiotic relationship with the host. Altered gut microbiota is a common feature of several diseases of the gastrointestinal tract; however, the causal relationship between microbiota and disease pathogenesis is poorly understood. Necrotising enterocolitis (NEC) and inflammatory bowel disease (IBD) are both severe inflammatory diseases affecting the gastrointestinal tract. Although they affect very different patient populations, with NEC primarily being a disease of prematurity and IBD predominantly affecting adults although children can be affected, they both demonstrate common features of gut microbial dysbiosis and a dysregulated host immune response. By comparing and contrasting the changes in gut microbiota, host immune response and function, we aim to highlight common features in diseases that may seem clinically unrelated. Key areas of interest are the role of pattern recognition receptors in altered recognition and responses to the gut microbiota by the host immune system and the associated dysfunctional gut epithelial barrier. The challenge of identifying causal relationships between microbiota and disease is ever-present; however, considering a disease-agnostic approach may help to identify mechanistic pathways shared across several clinical diseases.

6.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120663

RESUMEN

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Polisacáridos/metabolismo , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Aminoácidos de Cadena Ramificada/metabolismo , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Butiratos/química , Butiratos/farmacología , Coenzima A Transferasas/química , Coenzima A Transferasas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Variación Genética/efectos de los fármacos , Concentración de Iones de Hidrógeno , Metaboloma/efectos de los fármacos , Metaboloma/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
7.
PLoS Biol ; 19(2): e3001116, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606675

RESUMEN

Humans and many other hosts establish a diverse community of beneficial microbes anew each generation. The order and identity of incoming symbionts is critical for health, but what determines the success of the assembly process remains poorly understood. Here we develop ecological theory to identify factors important for microbial community assembly. Our method maps out all feasible pathways for the assembly of a given microbiome-with analogies to the mutational maps underlying fitness landscapes in evolutionary biology. Building these "assembly maps" reveals a tradeoff at the heart of the assembly process. Ecological dependencies between members of the microbiota make assembly predictable-and can provide metabolic benefits to the host-but these dependencies may also create barriers to assembly. This effect occurs because interdependent species can fail to establish when each relies on the other to colonize first. We support our predictions with published data from the assembly of the preterm infant microbiota, where we find that ecological dependence is associated with a predictable order of arrival. Our models also suggest that hosts can overcome barriers to assembly via mechanisms that either promote the uptake of multiple symbiont species in one step or feed early colonizers. This predicted importance of host feeding is supported by published data on the impacts of breast milk in the assembly of the human microbiome. We conclude that both microbe to microbe and host to microbe interactions are important for the trajectory of microbiome assembly.


Asunto(s)
Recien Nacido Prematuro , Microbiota , Humanos , Recién Nacido , Leche Humana/microbiología , Modelos Teóricos , Simbiosis
8.
Nature ; 591(7851): 633-638, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627867

RESUMEN

The gut microbiota of preterm infants develops predictably1-7, with pioneer species colonizing the gut after birth, followed by an ordered succession of microorganisms. The gut microbiota is vital to the health of preterm infants8,9, but the forces that shape these predictable dynamics of microbiome assembly are unknown. The environment, the host and interactions between microorganisms all potentially shape the dynamics of the microbiota, but in such a complex ecosystem, identifying the specific role of any individual factor is challenging10-14. Here we use multi-kingdom absolute abundance quantification, ecological modelling and experimental validation to address this challenge. We quantify the absolute dynamics of bacteria, fungi and archaea in a longitudinal cohort of 178 preterm infants. We uncover microbial blooms and extinctions, and show that there is an inverse correlation between bacterial and fungal loads in the infant gut. We infer computationally and demonstrate experimentally in vitro and in vivo that predictable assembly dynamics may be driven by directed, context-dependent interactions between specific microorganisms. Mirroring the dynamics of macroscopic ecosystems15-17, a late-arriving member of the microbiome, Klebsiella, exploits the pioneer microorganism, Staphylococcus, to gain a foothold within the gut. Notably, we find that interactions between different kingdoms can influence assembly, with a single fungal species-Candida albicans-inhibiting multiple dominant genera of gut bacteria. Our work reveals the centrality of simple microbe-microbe interactions in shaping host-associated microbiota, which is critical both for our understanding of microbiota ecology and for targeted microbiota interventions.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal , Recien Nacido Prematuro , Carga Bacteriana , Dieta , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Interacciones Microbianas , Reproducibilidad de los Resultados
9.
Curr Biol ; 29(11): R538-R544, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163167

RESUMEN

The mammalian gut harbors a vast community of microorganisms - termed the microbiota - whose composition and dynamics are considered to be critical drivers of host health. These factors depend, in part, upon the manner in which microbes interact with one another. Microbes are known to engage in a myriad of different ways, ranging from unprovoked aggression to actively feeding each other. However, the relative extent to which these different interactions occur between microbes within the gut is unclear. In this minireview we assess our current knowledge of microbe-microbe interactions within the mammalian gut microbiota, and the array of methods used to uncover them. In particular, we highlight the discrepancies between different methodologies: some studies have revealed rich networks of cross-feeding interactions between microbes, whereas others suggest that microbes are more typically locked in conflict and actively cooperate only rarely. We argue that to reconcile these contradictions we must recognize that interactions between members of the microbiota can vary across condition, space, and time - and that only through embracing this dynamism will we be able to comprehensively understand the ecology of our gut communities.


Asunto(s)
Microbioma Gastrointestinal , Mamíferos/microbiología , Interacciones Microbianas , Animales
10.
Sci Transl Med ; 10(460)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30257956

RESUMEN

Antibiotic treatment can deplete the commensal bacteria of a patient's gut microbiota and, paradoxically, increase their risk of subsequent infections. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), antibiotic administration is essential for optimal clinical outcomes but significantly disrupts intestinal microbiota diversity, leading to loss of many beneficial microbes. Although gut microbiota diversity loss during allo-HSCT is associated with increased mortality, approaches to reestablish depleted commensal bacteria have yet to be developed. We have initiated a randomized, controlled clinical trial of autologous fecal microbiota transplantation (auto-FMT) versus no intervention and have analyzed the intestinal microbiota profiles of 25 allo-HSCT patients (14 who received auto-FMT treatment and 11 control patients who did not). Changes in gut microbiota diversity and composition revealed that the auto-FMT intervention boosted microbial diversity and reestablished the intestinal microbiota composition that the patient had before antibiotic treatment and allo-HSCT. These results demonstrate the potential for fecal sample banking and posttreatment remediation of a patient's gut microbiota after microbiota-depleting antibiotic treatment during allo-HSCT.


Asunto(s)
Antibacterianos/farmacología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Biodiversidad , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Humanos , Estudios Longitudinales , Trasplante Autólogo
11.
Curr Opin Microbiol ; 44: 41-49, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30041083

RESUMEN

Nowadays, microbial communities are frequently monitored over long periods of time and the interactions between their members are explored in vitro. This development has opened the way to apply mathematical models to characterize community structure and dynamics, to predict responses to perturbations and to explore general dynamical properties such as stability, alternative stable states and periodicity. Here, we highlight the role of dynamical systems theory in the exploration of microbial communities, with a special emphasis on the generalized Lotka-Volterra (gLV) equations. In particular, we discuss applications, assumptions and limitations of the gLV model, mention modifications to address these limitations and review stochastic extensions. The development of dynamical models, together with the generation of time series data, can improve the design and control of microbial communities.


Asunto(s)
Microbiota , Modelos Teóricos , Dinámica Poblacional
12.
Nature ; 548(7665): 43-51, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28770836

RESUMEN

The human body carries vast communities of microbes that provide many benefits. Our microbiome is complex and challenging to understand, but evolutionary theory provides a universal framework with which to analyse its biology and health impacts. Here we argue that to understand a given microbiome feature, such as colonization resistance, host nutrition or immune development, we must consider how hosts and symbionts evolve. Symbionts commonly evolve to compete within the host ecosystem, while hosts evolve to keep the ecosystem on a leash. We suggest that the health benefits of the microbiome should be understood, and studied, as an interplay between microbial competition and host control.


Asunto(s)
Evolución Biológica , Ecosistema , Interacciones Microbianas/fisiología , Microbiota/fisiología , Modelos Biológicos , Simbiosis/fisiología , Animales , Biodiversidad , Salud , Humanos , Interacciones Microbianas/efectos de los fármacos , Interacciones Microbianas/inmunología , Microbiota/efectos de los fármacos , Microbiota/inmunología , Especificidad de la Especie , Simbiosis/efectos de los fármacos , Simbiosis/inmunología
14.
Proc Natl Acad Sci U S A ; 114(2): E161-E170, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28007984

RESUMEN

Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow-biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli/fisiología , Interacciones Microbianas , Ecosistema , Teoría del Juego , Hidrodinámica , Modelos Teóricos , Porosidad
15.
Science ; 350(6261): 663-6, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542567

RESUMEN

The human gut harbors a large and complex community of beneficial microbes that remain stable over long periods. This stability is considered critical for good health but is poorly understood. Here we develop a body of ecological theory to help us understand microbiome stability. Although cooperating networks of microbes can be efficient, we find that they are often unstable. Counterintuitively, this finding indicates that hosts can benefit from microbial competition when this competition dampens cooperative networks and increases stability. More generally, stability is promoted by limiting positive feedbacks and weakening ecological interactions. We have analyzed host mechanisms for maintaining stability-including immune suppression, spatial structuring, and feeding of community members-and support our key predictions with recent data.


Asunto(s)
Tracto Gastrointestinal/microbiología , Interacciones Microbianas/fisiología , Microbiota/fisiología , Modelos Biológicos , Simulación por Computador , Fenómenos Ecológicos y Ambientales , Humanos , Tolerancia Inmunológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...