Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Top Microbiol Immunol ; 282: 49-88, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14594214

RESUMEN

Pleckstrin homology (PH) domains are small modular domains that occur once, or occasionally several times, in a large variety of signalling proteins. In a number of instances, PH domains act to target their host protein to the cytosolic face of cellular membranes through an ability to associate with phosphoinositides. In this review, we discuss recent advances in our understanding of PH domain function. In particular we describe the structural aspects of how PH domains have evolved to bind various phosphoinositides, how PH domains regulate phosphoinositide-mediated association to plasma and internals membranes, and finally raise the issue of PH domains in protein:protein interactions and the allosteric regulation of their host protein.


Asunto(s)
Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Sanguíneas/genética , Membrana Celular/metabolismo , Quimiotaxis/fisiología , Humanos , Membranas Intracelulares/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Fosfoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal
2.
Curr Biol ; 11(21): R882-93, 2001 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-11696348

RESUMEN

The membrane phospholipid phosphatidylinositol is the precursor of a family of lipid second-messengers, known as phosphoinositides, which differ in the phosphorylation status of their inositol group. A major advance in understanding phosphoinositide signalling has been the identification of a number of highly conserved modular protein domains whose function appears to be to bind various phosphoinositides. Such 'cut and paste' modules are found in a diverse array of multidomain proteins and recruit their host protein to specific regions in cells via interactions with phosphoinositides. Here, with particular reference to proteins involved in membrane traffic pathways, we discuss recent advances in our understanding of phosphoinositide-binding domains.


Asunto(s)
Proteínas Sanguíneas/química , Secuencia Conservada , Endocitosis/fisiología , Fagocitosis/fisiología , Fosfatidilinositoles/metabolismo , Fosfoproteínas/química , Sistemas de Mensajero Secundario , Secuencia de Aminoácidos , Sitios de Unión , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estructura Terciaria de Proteína
3.
Biochem J ; 349(Pt 1): 333-42, 2000 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-10861245

RESUMEN

GAP1(IP4BP) is a Ras GTPase-activating protein (GAP) that in vitro is regulated by the cytosolic second messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)]. We have studied Ins(1,3,4,5)P(4) binding to GAP1(IP4BP), and shown that the inositol phosphate specificity and binding affinity are similar to Ins(1,3,4,5)P(4) binding to Bruton's tyrosine kinase (Btk), evidence which suggests a similar mechanism for Ins(1,3,4,5)P(4) binding. The crystal structure of the Btk pleckstrin homology (PH) domain in complex with Ins(1,3,4,5)P(4) has shown that the binding site is located in a partially buried pocket between the beta 1/beta 2- and beta 3/beta 4-loops. Many of the residues involved in the binding are conserved in GAP1(IP4BP). Therefore we generated a model of the PH domain of GAP1(IP4BP) in complex with Ins(1,3,4,5)P(4) based on the Btk-Ins(1,3,4,5)P(4) complex crystal structure. This model had the typical PH domain fold, with the proposed binding site modelling well on the Btk structure. The model has been verified by site-directed mutagenesis of various residues in and around the proposed binding site. These mutations have markedly reduced affinity for Ins(1,3,4,5)P(4), indicating a specific and tight fit for the substrate. The model can also be used to explain the specificity of inositol phosphate binding.


Asunto(s)
Proteínas Sanguíneas/química , Fosfatos de Inositol/química , Fosfoproteínas/química , Receptores Citoplasmáticos y Nucleares/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Lisina/química , Metionina/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Triptófano/química
4.
J Biol Chem ; 275(36): 28261-8, 2000 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-10869341

RESUMEN

The group I family of pleckstrin homology (PH) domains are characterized by their inherent ability to specifically bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and its corresponding inositol head-group inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). In vivo this interaction results in the regulated plasma membrane recruitment of cytosolic group I PH domain-containing proteins following agonist-stimulated PtdIns(3,4,5)P(3) production. Among group I PH domain-containing proteins, the Ras GTPase-activating protein GAP1(IP4BP) is unique in being constitutively associated with the plasma membrane. Here we show that, although the GAP1(IP4BP) PH domain interacts with PtdIns(3,4, 5)P(3), it also binds, with a comparable affinity, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) (K(d) values of 0.5 +/- 0.2 and 0.8 +/- 0.5 microm, respectively). Intriguingly, whereas this binding site overlaps with that for Ins(1,3,4,5)P(4), consistent with the constitutive plasma membrane association of GAP1(IP4BP) resulting from its PH domain-binding PtdIns(4,5)P(2), we show that in vivo depletion of PtdIns(4,5)P(2), but not PtdIns(3,4,5)P(3), results in dissociation of GAP1(IP4BP) from this membrane. Thus, the Ins(1,3,4,5)P(4)-binding PH domain from GAP1(IP4BP) defines a novel class of group I PH domains that constitutively targets the protein to the plasma membrane and may allow GAP1(IP4BP) to be regulated in vivo by Ins(1,3,4,5)P(4) rather than PtdIns(3,4,5)P(3).


Asunto(s)
Membrana Celular/metabolismo , Fosfatos de Inositol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Núcleo Celular/metabolismo , Células HeLa , Humanos , Liposomas , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/metabolismo , Sacarosa , Transfección
5.
Biochem J ; 340 ( Pt 3): 639-47, 1999 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10359647

RESUMEN

The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalytic efficiency between substrates are mainly related to differences in their affinity for the enzyme. Remarkably, it appears that, if a hexose is able to bind in the active site, then it is also oxidized, whereas some pentoses are able to bind (and act as competitive inhibitors), but are not substrates. The activation energies for the oxidation of hexoses and pentoses are almost identical. In a previously published model of the enzyme, His262 is at the entrance to the active site and appears to be important in holding the prosthetic group pyrroloquinoline quinone (PQQ) in place, and it has been suggested that it might play a role in electron transfer from the reduced PQQ to the ubiquinone in the membrane. The H262Y-GDH has a greatly diminished catalytic efficiency for all substrates, which is mainly due to a marked decrease in their affinities for the enzyme, but the rate of electron transfer to oxygen is unaffected. During the processing of the PQQ into the apoenzyme to give active enzyme, its affinity is markedly dependent on the pH, four groups with pK values between pH7 and pH8 being involved. Identical results were obtained with H262Y-GDH, showing that His262 it is not directly involved in this process.


Asunto(s)
Sustitución de Aminoácidos , Membrana Celular/enzimología , Escherichia coli/enzimología , Glucosa Deshidrogenasas/metabolismo , Histidina/genética , Tirosina/genética , Apoenzimas/biosíntesis , Apoenzimas/química , Apoenzimas/aislamiento & purificación , Apoenzimas/metabolismo , Sitios de Unión , Transporte de Electrón , Escherichia coli/citología , Escherichia coli/genética , Glucosa Deshidrogenasas/química , Glucosa Deshidrogenasas/genética , Glucosa Deshidrogenasas/aislamiento & purificación , Hexosas/química , Hexosas/metabolismo , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxígeno/metabolismo , Cofactor PQQ , Pentosas/química , Pentosas/metabolismo , Quinolonas/metabolismo , Quinonas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tirosina/metabolismo
7.
Biochem J ; 312 ( Pt 3): 679-85, 1995 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-8554505

RESUMEN

The structure of methanol dehydrogenase (MDH) at 0.194 nm (1.94 A) has been used to provide a model structure for part of a membrane quinoprotein glucose dehydrogenase (GDH). The basic superbarrel structure is retained, along with the tryptophan-docking motifs. The active-site regions are similar, but there are important differences, the most important being that GDH lacks the novel disulphide ring structure formed from adjacent cysteines in MDH; in GDH the equivalent region is occupied by His-262. Because of the overall similarities in the active-site region, the mechanism of action of GDH is likely to be similar to that of MDH. The differences in co-ordination to the cation and bonding to the pyrrolo-quinoline quinone (PQQ) in the active site may explain the relative ease of dissociation of the prosthetic group from the holo-GDH. There are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site, the configuration of which influences substrate specificity. The proposed model is consistent in many respects with previous proposals for the active-site structure based on the effects of chemical modification on binding of PQQ and enzymic activity.


Asunto(s)
Oxidorreductasas de Alcohol/química , Escherichia coli/enzimología , Glucosa Deshidrogenasas/química , Bacterias Aerobias Gramnegativas/enzimología , Modelos Moleculares , Secuencia de Aminoácidos , Sitios de Unión , Secuencia de Consenso , Datos de Secuencia Molecular , Cofactor PQQ , Quinolonas/metabolismo
8.
Biochem J ; 308 ( Pt 2): 375-9, 1995 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-7772016

RESUMEN

The 1.94 A structure of methanol dehydrogenase has been used to provide a model structure for part of a membrane quinohaemoprotein alcohol dehydrogenase. The basic superbarrel structure and the active-site region are retained, indicating essentially similar mechanisms of action, but there are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site.


Asunto(s)
Acetobacter/enzimología , Alcohol Deshidrogenasa/ultraestructura , Oxidorreductasas de Alcohol/ultraestructura , Bacterias Aerobias Gramnegativas/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Secuencia de Consenso , Modelos Moleculares , Datos de Secuencia Molecular , Cofactor PQQ , Estructura Terciaria de Proteína , Quinolonas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA