Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 11(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36141053

RESUMEN

This study aimed to investigate the antifungal and antimycotoxicogenic effect of binary and tertiary mixtures of Thymus vulgaris, Origanum sativum, and Coriandrum sativum essential oils (EOs), as well as emulsions based on EO mixtures, on fungi developed on wheat grains destined for the bakery industry. The chemical composition of the EO mixtures, the physical characteristics of the emulsions, and the influence of treatments on the proximate composition of wheat seeds were also studied. The methods used included the microbiological analysis of fungi developed on wheat seeds, the ELISA technique for determining the deoxynivalenol content (DON), gas chromatography coupled with mass spectrometry (GC-MS) to detect the chemical composition of the EOs, Zetasizer to analyse the particle sizes and their electric charge at the surface, and NIR analysis of the proximate composition of wheat. The chemical composition analysis revealed that thymol and o-cymene were the major components in the binary mixture of the EOs with thyme, linalool in the binary mixtures of the EOs with coriander and carvacrol, and o-cymene in the binary mixtures of the EOs with oregano. The results showed that, based on the zeta potential, the tertiary mixture ensured maximum emulsion stability, while the emulsion based on thyme and oregano was the less stable system. Regarding the antifungal and antimycotoxicogenic effect, the results showed that the highest inhibition potential on fungi was observed with the binary mixtures of the EOs based on thyme and oregano, and on deoxynivalenol (DON) when the binary emulsion based on the same EOs was applied to wheat seeds. The proximate composition of wheat seeds contaminated with DON showed an increase in protein content and mineral substances, and there were changes in the colour of the wheat seeds after treatment with the EOs. In conclusion, the results obtained in this study showed the possibility of using binary/tertiary mixtures of EOs and emulsions as healthy and environmentally friendly alternatives in the bakery industry.

2.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164253

RESUMEN

Medicinal plants and essential oils (EOs), in particular, were intensively studied in recent years as viable alternatives for antiproliferative chemical synthetic agents. In the same lines, the present study focuses on investigating the effects of natural preparations (emulsions) based on EOs obtained from Citrus bergamia Risso (bergamot-BEO), Citrus sinensis Osbeck (orange-OEO), and Syzygium aromaticum Merill et L. M. Perry (clove-CEO) on different healthy (human immortalized keratinocytes-HaCaT and primary human gingival fibroblasts-HGF) and human tumor cell lines (human melanoma-A375 and oral squamous carcinoma-SCC-4) in terms of the cells' viability and cellular morphology. The obtained results indicate that the CEO emulsion (ECEO) induced a dose-dependent cytotoxic in both healthy (HaCaT and HGF) and tumor (A375 and SCC-4) cells. OEO emulsion (EOEO) increased cell viability percentage both for HaCaT and A375 cells and had an antiproliferative effect at the highest concentration in HGF and SCC-4 cells. BEO emulsion (EBEO) decreased the viability percentage of SCC-4 tumor cells. By associating OEO with CEO as a binary mixture in an emulsified formulation, the inhibition of tumor cell viability increases. The E(BEO/OEO) binary emulsion induced an antiproliferative effect on oral health and tumor cells, with a minimal effect on skin cells. The non-invasive tests performed to verify the safety of the test compound's emulsions at skin level indicated that these compounds do not significantly modify the physiological skin parameters and can be considered safe for human skin.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Citrus sinensis/química , Aceite de Clavo/química , Aceites Volátiles/farmacología , Línea Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Cromatografía de Gases y Espectrometría de Masas , Humanos , Aceites Volátiles/química
3.
Antibiotics (Basel) ; 10(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205938

RESUMEN

This study aimed to investigate the chemical composition and the activity against Staphylococcus aureus (S. aureus) (ATCC 25923), Streptococcus pyogenes (S. pyogenes) (ATCC 19615), Escherichia coli (E. coli) (ATCC 25922), Pseudomonas aeruginosa (P. aeruginosa) (ATCC 27853), Shigella flexneri (S. flexneri) (ATCC 12022), Salmonella typhimurium (S. typhimurium) (ATCC 14028), Haemophillus influenzae (H. influenza) type B (ATCC 10211) and two fungal strains: Candida albicans (C. albicans) (ATCC 10231) and Candida parapsilopsis (C. parapsilopsis) (ATCC 22019) of the extracts obtained from Melilotus officinalis (MO), Coronilla varia (CV); Ononis spinosa (OS) and Robinia pseudoacacia (RP) (Fabaceae), and to identify the chemical compounds responsible for the antimicrobial effect against the tested strains. The extracts were obtained by conventional hydroalcoholic extraction and analyzed in terms of total polyphenols using the spectrophotometric method and by liquid chromatography (LC). The results have shown that the highest polyphenols content was recorded in the RP sample (16.21 mg gallic acid equivalent GAE/g), followed by the CV (15.06 mg GAE/g), the OS (13.17 mg GAE/g), the lowest value being recorded for the MO sample (11.94 mg GAE/g). The antimicrobial testing of plant extracts was carried out using the microdilution method. The most sensitive strains identified were: E. coli, S. typhimurium, P. aeruginosa and S. pyogenes, while protocatechuic acid, gallic acid, caffeic acid, quercetin, rutin, and kaempferol were identified as the chemical compounds responsible for the antibacterial effect. The analysis of the correlation between the chemical composition and the antimicrobial effect proved a moderate (r > 0.5) positive correlation between rosmarinic acid and S. pyogenes (r = 0.526), rosmarinic acid and S. typhimurium (r = 0.568), quercetin and C. albicans (r = 0.553), quercetin and S. pyogenes (r = 0.605). Therefore, it suggested possible antimicrobial activity generated by these chemical components. The results recommend the Fabaceae plants as promising candidates for further research to develop novel natural antimicrobial drugs.

4.
Molecules ; 25(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255327

RESUMEN

Since ancient times complementary therapies have been based on the use of medicinal plants, natural preparations and essential oils in the treatment of various diseases. Their use in medical practice is recommended in view of their low toxicity, pharmacological properties and economic impact. This paper aims to test the antimicrobial effect of natural preparation based on clove, orange and bergamot essential oils on a wide range of microorganisms that cause infections in humans including: Streptococcus pyogenes, Staphylococcus aureus, Shigella flexneri, Candida parapsilosis, Candida albicans, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhimurium and Haemophilus influenza. Three natural preparations such as one-component emulsions: clove (ECEO), bergamote (EBEO), and orange (EOEO), three binary: E(BEO/CEO), E(BEO/OEO), E(CEO/OEO) and a tertiary emulsion E(OEO/BEO/CEO) were obtained, characterized and tested for antimicrobial effects. Also, the synergistic/antagonistic effects, generated by the presence of the main chemical compounds, were studied in order to recommend a preparation with optimal antimicrobial activity. The obtained results underline the fact that the monocomponent emulsion ECEO shows antimicrobial activity, while EOEO and EBEO do not inhibit the development of the analyzed strains. In binary or tertiary emulsions E(BEO/CEO), E(CEO/OEO) and E(OEO/ BEO/CEO) the antimicrobial effect of clove oil is potentiated due to the synergism exerted by the chemical compounds of essential oils.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Citrus sinensis/química , Citrus/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Syzygium/química , Emulsiones , Humanos , Pruebas de Sensibilidad Microbiana , Fitoquímicos/química , Fitoquímicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...