Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Inorg Chem ; 62(31): 12582-12589, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37499143

RESUMEN

The solution phase anion binding behavior of a water-stable bidentate pnictogen bond donor was studied. A modest change in the visible absorption spectrum allowed for the determination of the binding constants. High binding constants were observed with cyanide, cyanate, and acetate, and these were corroborated with density functional theory (DFT) calculations. The receptor could be recovered free from the anion following treatment with methyl triflate, confirming that it remains intact. The tight binding of cyanide and water stability were exploited to use this system as a supramolecular catalyst in a phase-transfer Strecker reaction, further demonstrating the utility of pnictogen bonding as a tool in noncovalent catalysis.

2.
Dalton Trans ; 51(30): 11335-11339, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35796284

RESUMEN

The structure of the simplest stibatrane has been a mystery since it was first prepared in 1966. This study reports the preparation and characterization of two stibatranes from triethanolamine and triisopropanolamine. Solid state structures reveal macrocycles that contain favourable inter- and intramolecular pnictogen bonds. Solution studies, corroborated by DFT analysis, reveal an equilibrium mixture assigned to monomer and pnictogen-bonded dimer. This allowed for the determination of an enthalpy associated with pnictogen bond formation of -27 kJ mol-1, in line with the supramolecular nature of these interactions.


Asunto(s)
Enlace de Hidrógeno , Termodinámica
3.
J Am Chem Soc ; 144(13): 5784-5794, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35344360

RESUMEN

The diverse optical, magnetic, and electronic behaviors of most colloidal semiconductor nanocrystals emerge from materials with limited structural and elemental compositions. Conductive metal-organic frameworks (MOFs) possess rich compositions with complex architectures but remain unexplored as nanocrystals, hindering their incorporation into scalable devices. Here, we report the controllable synthesis of conductive MOF nanoparticles based on Fe(1,2,3-triazolate)2. Sizes can be tuned to as small as 5.5 nm, ensuring indefinite colloidal stability. These solution-processable MOFs can be analyzed by solution-state spectroscopy and electrochemistry and cast into conductive thin films with excellent uniformity. This unprecedented analysis of MOF materials reveals a strong size dependence in optical and electronic behaviors sensitive to the intrinsic porosity and guest-host interactions of MOFs. These results provide a radical departure from typical MOF characterization, enabling insights into physical properties otherwise impossible with bulk analogues while offering a roadmap for the future of MOF nanoparticle synthesis and device fabrication.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Conductividad Eléctrica , Electrónica , Estructuras Metalorgánicas/química , Porosidad
4.
Inorg Chem ; 60(15): 11242-11250, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34286963

RESUMEN

Triple pnictogen bonding refers to the ability of a pnictogen atom to engage in three simultaneous pnictogen bonds (PnBs) to a complementary partner through a single pnictogen atom. This supramolecular strategy was recently introduced as a unique facet of pnictogen bonding as compared to other named supramolecular interactions. Here, the ability of bismuth to participate in this phenomenon is demonstrated using Bi((NC9H7)3CH3). The study reveals that Bi engages in stronger PnBs than the analogous Sb system. The results have been contrasted with Bi systems that form strong coordination bonds, and analysis of the electron density along the bond path reveals key differences. The solution behavior of these newly synthesized supramolecules were studied by PFGSE NMR spectroscopy and they are found to remain intact in solution. Molecular design strategies that allow for triple pnictogen bonding should find use in the fields of molecular recognition and crystal engineering.

5.
Chem Sci ; 11(17): 4374-4380, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33224458

RESUMEN

A new air and moisture stable antimony thiolate compound has been prepared that spontaneously forms stable hollow vesicles. Structural data reveals that pnictogen bonding drives the self-assembly of these molecules into a reversed bilayer. The ability to make these hollow, spherical, and chemically and temporally stable vesicles that can be broken and reformed by sonication allows these systems to be used for encapsulation and compartmentalisation in organic media. This was demonstrated through the encapsulation and characterization of several small organic reporter molecules.

6.
Inorg Chem ; 58(23): 16227-16235, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31718176

RESUMEN

Supramolecular assembly utilizing simultaneous formation of three pnictogen bonds around a single antimony vertex was explored via X-ray crystallography, solution NMR, and computational chemistry. An arylethynyl (AE) ligand was designed to complement the three electrophilic regions around the Sb compound. Though solution studies reveal large binding constants for individual pyridyl units with the Sb donor, the rigidity and prearrangement of the AE acceptor proved necessary to achieve simultaneous binding of three acceptors to the Sb-centered pnictogen-bond donor. Calculations and X-ray structures suggest that negative cooperativity upon sequential binding of three acceptors to a Sb center limits the utility of triple-pnictogen bonding pyridyl acceptors. These limitations can be negated, however, when positive cooperativity is designed into a complementary acceptor ligand.

7.
Dalton Trans ; 48(19): 6445-6454, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31017171

RESUMEN

Iodine functionalized variants of DUT-5 (Al) and UiO-67 (Zr) were prepared as expanded-pore analogues of MIL-53 (Al) and UiO-67 (Zr). They were prepared using a combination of multivariate and isorecticular expansion strategies. Multivariate MOFs with a 25% iodine-containing linker was chosen to achieve an ideal balance between a high density of catalytic sites and sufficient space for efficient diffusion. Changes to the oxidation potential of the catalyst as a result of the pore-expansion strategy led to a decrease in activity with electron rich substrates. On the other hand, these larger frameworks proved to be more efficient catalysts for substrates with higher oxidation potentials. Recyclability tests for these larger MOFs showed sustained catalytic activity over multiple recycles.

8.
Org Biomol Chem ; 17(7): 1834-1838, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30604820

RESUMEN

The reaction of (dppBIAN)FeCl2 with 3 equivalents of n-BuLi affords a catalytically active anionic Fe complex; the nature of the anionic complex was probed using EPR and IR experiments and is proposed to involve a dearomatized, radical, ligand scaffold. This complex is an active catalyst for the hydrosilylation of esters to afford alcohols; loadings as low as 1 mol% were employed.

9.
Chem Commun (Camb) ; 54(64): 8849-8852, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30039149

RESUMEN

Artificial vesicles can aid in the study and understanding of biological cell membranes. This study employs pnictogen bonding to actively direct the self-assembly of a true reversed bilayer. Antimony(iii) alkoxide cages that self-assemble through multiple strong SbO interactions propagate in two dimensions to form a reverse bilayer structure in the solid state. Long alkyl tails allow these reverse bilayers to be processed into vesicles in solution that are a reverse of biological cell membranes.

10.
Inorg Chem ; 57(12): 6825-6832, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29878771

RESUMEN

Catalytic Meerwein-Ponndorf-Verley reductions of ketones and aldehydes in the presence of isopropyl alcohol were performed at aluminum alkoxide sites that were postsynthetically introduced into robust metal-organic frameworks (MOFs). The aluminum was anchored at the bridging hydroxyl sites inherent in some MOFs. MOFs in the UiO-66/67 family as well as DUT-5 were successfully adapted to this strategy. Incorporation of catalytically active aluminum species greatly enhanced the reactivity of the native MOF at 80 °C in the case of both UiO-66, and was almost solely responsible for catalytic activity in the case of metalated UiO-66 and DUT-5. The site isolation of the catalyst prevented aggregation and complete deactivation of the molecular aluminum catalyst, allowing it to be recovered and recycled in the case of UiO-67. This catalyst also proved to be moderately tolerant to wet isopropyl alcohol.

11.
Molecules ; 23(5)2018 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-29783733

RESUMEN

Alkaloids compose a large class of natural products, and mono-methylated polyamines are a common intermediate in their biosynthesis. In order to evaluate the role of selectively methylated natural products, synthetic strategies are needed to prepare them. Here, N-methylcadaverine is prepared in 37.3% yield in three steps. The alternative literature two-step strategy resulted in reductive deamination to give N-methylpiperidine as determined by the single crystal structure. A straightforward strategy to obtain the mono-alkylated aliphatic diamine, cadaverine, which avoids potential side-reactions, is demonstrated.


Asunto(s)
Poliaminas Biogénicas/síntesis química , Cadaverina/química , Piperidinas/síntesis química , Poliaminas Biogénicas/química , Cristalografía por Rayos X , Ciclización , Metilación , Modelos Moleculares , Estructura Molecular , Piperidinas/química
12.
Photochem Photobiol Sci ; 17(4): 432-441, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29528073

RESUMEN

Carboxamidines functionalized with either a spiropyran or fulgimide photoswitch were prepared on multigram scales. The thermal, electrochemical, and photochemical ring isomerizations of these compounds were studied and the results compared with related systems. The photochemical isomerisations were found to be reversible and could be followed by 1H NMR and UV-vis spectroscopy. The spiropyran/merocyanine couple was thermally active and an activation enthalpy of 116 kJ mol-1 was measured for ring-opening. These measurements yielded an enthalpy difference of 25 kJ mol-1 between the open and closed states which is consistent with DFT calculations. DFT calculations predicted a charge transfer to the carboxamidine group upon ring closure in the fulgimide and a charge transfer from the carboxamidine group upon switching the spiropyran to the merocyanine form. This was confirmed experimentally by monitoring the change in the oxidation potential assigned to the carboxamidine group. The potential of these molecules to therefore act as a new class of photoresponsive ligands that can modulate the ligand field of a complex is discussed.

13.
Inorg Chem ; 56(14): 8372-8380, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28650624

RESUMEN

Antimony(III) alkoxide cages were designed as building blocks for predictable supramolecular self-assembly. Supramolecular synthons featuring two Sb···O secondary bonding interactions (SBIs), each SBI stronger than 30 kJ/mol, were used to drive the formation of the supramolecular architectures. Judicious choice of pendant groups provided predictable control over the formation of self-assembled 3D columnar helices, which crystallized with hollow morphologies, or a self-assembled 2D bilayer. The Sb-O stretching frequency provides a spectroscopic signature of Sb···O SBI formation.

14.
Dalton Trans ; 46(20): 6553-6569, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28463361

RESUMEN

The synthesis, characterization, photophysical properties, theoretical calculations, and catalytic applications of 2,9-di(aryl)-1,10-phenanthroline copper(i) complexes are described. Specifically, this study made use of di(aryl)-1,10-phenanthroline ligands including 2,9-di(4-methoxyphenyl)-1,10-phenanthroline (1), 2,9-di(4-hydroxyphenyl)-1,10-phenanthroline (2), 2,9-di(4-methoxy-3-methylphenyl)-1,10-phenanthroline (3), and 2,9-di(4-hydroxy-3-methylphenyl)-1,10-phenanthroline (4). The 2 : 1 ligand-to-metal complexes, as PF6- salts, i.e., ([Cu·(1)2]PF6, [Cu·(2)2]PF6, [Cu·(3)2]PF6, and [Cu·(4)2]PF6) have been isolated and characterized. The structures of ligands 1 and 2 and complexes [Cu·(1)2]PF6 and [Cu·(3)2]PF6 have been determined by single-crystal X-ray analysis. The photoredox catalytic activity of these copper(i) complexes was investigated in an atom-transfer radical-addition (ATRA) reaction and the results showed fairly efficient activity, with a strong wavelength dependence. In order to better understand the observed catalytic activity, photophysical emission and absorption studies, and DFT calculations were also performed. It was determined that when the excitation wavelength was appropriate for exciting into the LUMO+1 or LUMO+2, catalysis would occur. On the contrary, excitations into the LUMO resulted in no observable catalysis. In light of these results, a mechanism for the ATRA photoredox catalytic cycle has been proposed.

15.
J Phys Chem A ; 120(46): 9257-9269, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27768303

RESUMEN

Density functional theory calculations were used to design an anion receptor that utilizes antimony(III) secondary bonding interactions. Calculations were performed on promising motifs found in the chemical literature where two antimony sites were found in close proximity to a halide anion. The study was extended to a structurally related class of 1,3,2-benzodioxastibole derivatives to elucidate their potential for binding halide ions. Multiple geometric conformations were evaluated and various ratios of halide anions were considered. According to the computation results, this class of anion receptors shows strong affinities toward charge-dense halides. These 1,3,2-benzodioxastibole derivatives were prepared to evaluate their synthetic accessibility. Structural characterization of one species revealed the ability to bind up to three electron donors through secondary bonding interactions. This gates the future experimental study of these antimony systems for anion binding and recognition.

16.
J Am Chem Soc ; 136(9): 3334-7, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24533772

RESUMEN

Unsaturated metal sites within the nodes of metal-organic frameworks (MOFs) can be interrogated by redox reagents common to small molecule chemistry. We show, for the first time, that an analogue of the iconic M2(2,5-dioxidoterephthalate) (M2DOBDC, MOF-74) class of materials can be stoichiometrically oxidized by one electron per metal center. The reaction of Mn2DOBDC with C6H5ICl2 produces the oxidized material Cl2Mn2DOBDC, which retains crystallinity and porosity. Surprisingly, magnetic measurements, X-ray absorption, and infrared spectroscopic data indicate that the Mn ions maintain a formal oxidation state of +2, suggesting instead the oxidation of the DOBDC(4-) ligand to the quinone DOBDC(2-). These results describe the first example of ligand redox non-innocence in a MOF and a rare instance of stoichiometric electron transfer involving the metal nodes. The methods described herein offer a synthetic toolkit that will be of general use for further explorations of the redox reactivity of MOF nodes.


Asunto(s)
Complejos de Coordinación/química , Ácidos Ftálicos/química , Ligandos , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
17.
Dalton Trans ; 43(12): 4639-52, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24492850

RESUMEN

An important challenge in the artificial fixation of N2 is to find atom efficient transformations that yield value-added products. Here we explore the coordination complex mediated conversion of ubiquitous species, CO and N2, into isocyanate. We have conceptually split the process into three steps: (1) the six-electron splitting of dinitrogen into terminal metal nitrido ligands, (2) the reduction of the complex by two electrons with CO to form an isocyanate linkage, and (3) the one electron reduction of the metal isocyanate complex to regenerate the starting metal complex and release the product. These steps are explored separately in an attempt to understand the limitations of each step and what is required of a coordination complex in order to facilitate a catalytic cycle. The possibility of this cyanate cycle was explored with both Mo and V complexes which have previously been shown to perform select steps in the sequence. Experimental results demonstrate the feasibility of some of the steps and DFT calculations suggest that, although the reduction of the terminal metal nitride complex by carbon monoxide should be thermodynamically favorable, there is a large kinetic barrier associated with the change in spin state which can be avoided in the case of the V complexes by an initial binding of the CO to the metal center followed by rearrangement. This mandates certain minimal design principles for the metal complex: the metal center should be sterically accessible for CO binding and the ligands should not readily succumb to CO insertion reactions.

18.
J Am Chem Soc ; 135(36): 13326-9, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23981174

RESUMEN

We show that fluorescent molecules incorporated as ligands in rigid, porous metal-organic frameworks (MOFs) maintain their fluorescence response to a much higher temperature than in molecular crystals. The remarkable high-temperature ligand-based fluorescence, demonstrated here with tetraphenylethylene- and dihydroxyterephthalate-based linkers, is essential for enabling selective and rapid detection of analytes in the gas phase. Both Zn2(TCPE) (TCPE = tetrakis(4-carboxyphenyl)ethylene) and Mg(H2DHBDC) (H2DHBDC(2-) = 2,5-dihydroxybenzene-1,4-dicarboxylate) function as selective sensors for ammonia at 100 °C, although neither shows NH3 selectivity at room temperature. Variable-temperature diffuse-reflectance infrared spectroscopy, fluorescence spectroscopy, and X-ray crystallography are coupled with density-functional calculations to interrogate the temperature-dependent guest-framework interactions and the preferential analyte binding in each material. These results describe a heretofore unrecognized, yet potentially general property of many rigid, fluorescent MOFs and portend new applications for these materials in selective sensors, with selectivity profiles that can be tuned as a function of temperature.

19.
J Am Chem Soc ; 135(30): 11357-72, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23805977

RESUMEN

Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

20.
J Am Chem Soc ; 134(48): 19596-9, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23157444

RESUMEN

Minimization of the torsional barrier for phenyl ring flipping in a metal-organic framework (MOF) based on the new ethynyl-extended octacarboxylate ligand H(8)TDPEPE leads to a fluorescent material with a near-dark state. Immobilization of the ligand in the rigid structure also unexpectedly causes significant strain. We used DFT calculations to estimate the ligand strain energies in our and all other topologically related materials and correlated these with empirical structural descriptors to derive general rules for trapping molecules in high-energy conformations within MOFs. These studies portend possible applications of MOFs for studying fundamental concepts related to conformational locking and its effects on molecular reactivity and chromophore photophysics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA