Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847109

RESUMEN

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis , Pared Celular/metabolismo , Glucosiltransferasas/fisiología , Lignina/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Lignina/química , Mutación , Plantas Modificadas Genéticamente , Xilema/metabolismo
2.
BMC Plant Biol ; 17(1): 124, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28705193

RESUMEN

BACKGROUND: Bast fibres are characterized by very thick secondary cell walls containing high amounts of cellulose and low lignin contents in contrast to the heavily lignified cell walls typically found in the xylem tissues. To improve the quality of the fiber-based products in the future, a thorough understanding of the main cell wall polymer biosynthetic pathways is required. In this study we have carried out a characterization of the genes involved in lignin biosynthesis in flax along with some of their regulation mechanisms. RESULTS: We have first identified the members of the phenylpropanoid gene families through a combination of in silico approaches. The more specific lignin genes were further characterized by high throughput transcriptomic approaches in different organs and physiological conditions and their cell/tissue expression was localized in the stems, roots and leaves. Laccases play an important role in the polymerization of monolignols. This multigenic family was determined and a miRNA was identified to play a role in the posttranscriptional regulation by cleaving the transcripts of some specific genes shown to be expressed in lignified tissues. In situ hybridization also showed that the miRNA precursor was expressed in the young xylem cells located near the vascular cambium. The results obtained in this work also allowed us to determine that most of the genes involved in lignin biosynthesis are included in a unique co-expression cluster and that MYB transcription factors are potentially good candidates for regulating these genes. CONCLUSIONS: Target engineering of cell walls to improve plant product quality requires good knowledge of the genes responsible for the production of the main polymers. For bast fiber plants such as flax, it is important to target the correct genes from the beginning since the difficulty to produce transgenic material does not make possible to test a large number of genes. Our work determined which of these genes could be potentially modified and showed that it was possible to target different regulatory pathways to modify lignification.


Asunto(s)
Lino/genética , Regulación de la Expresión Génica de las Plantas , Lacasa/genética , Lignina/genética , Simulación por Computador , Lino/enzimología , Genes de Plantas , Lignina/biosíntesis , MicroARNs/metabolismo , Familia de Multigenes , Fenilpropionatos/metabolismo , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
3.
Front Plant Sci ; 7: 735, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303427

RESUMEN

The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity.

4.
Chemosphere ; 84(5): 731-4, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21492903

RESUMEN

Aquatic organisms are exposed to fluctuating concentrations of herbicides which contaminate rivers following their use for agricultural or domestic purposes. The development of sensitive bioanalytical tests enabling us not only to detect the effects of those pollutants but to take into account this pattern of exposure should improve the ecological relevance of river toxicity assessment. In this respect, the use of chlorophyll fluorescence measurements is a convenient way to probe the effect of photosystem II (PSII) inhibitors on primary producers. This study was devoted to validate the combined use of two fluorescence parameters, the effective and the optimal quantum yields of PSII photochemistry (Φ(PSII) and F(v)/F(m)), as reliable biomarkers of initial isoproturon (IPU) or atrazine (ATZ) toxicity to natural periphyton in a pulse exposition scenario. Φ(PSII) and F(v)/F(m) were regularly estimated during a 7 h-exposure to each pollutant (0-100 µM) and also later after being transferred in herbicide-free water (up to 36 h). Our results showed that IPU was more toxic than ATZ, but with effects reversible within 12 h. Moreover, these two similarly acting herbicides (i.e. same target site) presented contrasted short term recovery patterns, regarding the previous exposure duration.


Asunto(s)
Atrazina/toxicidad , Bacterias/metabolismo , Herbicidas/toxicidad , Compuestos de Fenilurea/toxicidad , Fotosíntesis/efectos de los fármacos , Plancton/metabolismo , Bacterias/efectos de los fármacos , Diatomeas/efectos de los fármacos , Diatomeas/metabolismo , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Plancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
5.
Aquat Toxicol ; 97(4): 334-42, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20116867

RESUMEN

This study tested if a variation in light intensity, in comparison to constant light required in well-designed toxicity test, could have measurable consequences on the sensitivity of phototrophic biofilms (periphyton) to isoproturon. Two independent experiments were carried out to investigate the combined effects of light and isoproturon on the photochemical behavior of intact natural biofilms by measurements of chlorophyll fluorescence and pigment composition. Experiment 1 consisted of exposing biofilms to series of isoproturon concentrations (0-2 mg L(-1)) for 7 h under constant light at different irradiance levels (25-300 micromol m(-2) s(-1)). In experiment 2, biofilms were exposed using more environmentally realistic conditions to three selected concentrations of isoproturon (2, 6 and 20 microg L(-1)) during a 7-h-simulated daily light cycle. Our results demonstrated that light, considered here as a direct physical stressor, slightly modulated the acute toxicity of isoproturon on these diatom dominated communities. This was attributed to the fact that these two factors act specifically on the photosynthetic activity. Furthermore, it was shown that a dynamic light regime increased periphyton sensitivity to isoproturon by challenging its photoprotective mechanisms such as the xanthophyll cycle, therefore implying that traditional ecotoxicological bioassays lead to underestimate the effect of isoproturon.


Asunto(s)
Biopelículas/efectos de los fármacos , Diatomeas/metabolismo , Herbicidas/toxicidad , Compuestos de Fenilurea/toxicidad , Contaminantes Químicos del Agua/toxicidad , Clorofila/metabolismo , Diatomeas/efectos de los fármacos , Monitoreo del Ambiente/métodos , Fluorometría , Fotoperiodo , Fotosíntesis/efectos de los fármacos , Ríos
6.
New Phytol ; 185(1): 130-42, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19863732

RESUMEN

We estimated the level of quantitative polymorphism for zinc (Zn) tolerance in neighboring metallicolous and nonmetallicolous populations of Arabidopsis halleri and tested the hypothesis that divergent selection has shaped this polymorphism. A short-term hydroponic test was used to capture the quantitative polymorphism present between edaphic types, among and within populations. We measured six morphological and physiological traits on shoots and roots to estimate the response of A. halleri to Zn. In order to assess the adaptive value of Zn tolerance polymorphism, we compared differentiation of quantitative traits with that of molecular markers. Zinc tolerance of metallicolous populations was, on average, higher than that of nonmetallicolous populations according to the morphological and physiological traits measured. Phenotypic variability within edaphic types was very high and mainly explained by polymorphism among individuals within populations. Genetic differentiation for photosystem II yield of leaves (a measure of photosynthetic efficiency) was greater than the differentiation for microsatellite and thus, probably shaped by divergent selection. Overall, these results suggest that, in the sampled populations, Zn tolerance has been increased in metallicolous populations through selection on standing genetic variation within local nonmetallicolous ancestral populations.


Asunto(s)
Adaptación Biológica , Arabidopsis/genética , Fotosíntesis/genética , Polimorfismo Genético , Selección Genética , Zinc , Arabidopsis/metabolismo , Repeticiones de Microsatélite , Fenotipo , Complejo de Proteína del Fotosistema II/genética , Raíces de Plantas , Brotes de la Planta
7.
Mar Pollut Bull ; 58(1): 55-63, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18947841

RESUMEN

From 1999 to 2005, studies carried out in the frame of regional and national French programs aimed to determine whether the Phaeocystis globosa bloom affected the intertidal benthic communities of the French coast of the eastern English Channel in terms of composition and/or functioning. Study sites were chosen to cover most of the typical shore types encountered on this coast (a rocky shore, an exposed sandy beach and a small estuary). Both the presence of active Phaeocystis cells and their degradation product (foam) did have a significant impact on the studied shores. The primary production and growth rates of the kelp Saccharina latissima decreased during the bloom because of a shortage of light and nutrient for the macroalgae. On sandy sediments, the benthic metabolism (community respiration and community primary production), as well as the nitrification rate, were enhanced during foam deposits, in relation with the presence of bacteria and active pelagic cells within the decaying colonies. In estuarine sediments, the most impressive impact was the formation of a crust at the sediment surface due to drying foam. This led to anoxic conditions in the surface sediment and resulted in a high mortality among the benthic community. Some organisms also tended to migrate upward and were then directly accessible to the higher trophic level represented by birds. Phaeocystis then created a shortcut in the estuarine trophic network. Most of these modifications lasted shortly and all the systems considered came back to their regular properties and activities a few weeks after the end of the bloom, except for the most impacted estuarine area.


Asunto(s)
Ecosistema , Eucariontes/fisiología , Eutrofización , Playas , Inglaterra , Eucariontes/crecimiento & desarrollo , Eucariontes/ultraestructura , Francia , Sedimentos Geológicos/química , Kelp/crecimiento & desarrollo , Kelp/fisiología , Microscopía Electrónica de Rastreo , Océanos y Mares , Oxígeno/metabolismo , Fotosíntesis/fisiología , Compuestos de Amonio Cuaternario/metabolismo
8.
J Phycol ; 45(5): 1072-82, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27032352

RESUMEN

The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse-amplitude-modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv /Fm ), the effective PSII efficiency (ΦPSII ), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of P-I parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self-shading (in relation to algal biomass) could have influenced photosynthesis in older communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...