Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227837

RESUMEN

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Asunto(s)
Júpiter , Marte , Saturno , Humanos , Medio Ambiente Extraterrestre , Exobiología/métodos
2.
Blood Adv ; 8(2): 497-511, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38019014

RESUMEN

ABSTRACT: Familial platelet disorder with associated myeloid malignancies (FPDMM) is caused by germline RUNX1 mutations and characterized by thrombocytopenia and increased risk of hematologic malignancies. We recently launched a longitudinal natural history study for patients with FPDMM. Among 27 families with research genomic data by the end of 2021, 26 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 25 of 51 (49%) patients without hematologic malignancy, somatic mutations were detected in at least 1 of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 6 other CHIP- or AML-driver genes (TET2, DNMT3A, KRAS, LRP1B, IDH1, and KMT2C) were also found in ≥2 patients without hematologic malignancy. Moreover, 3 unrelated patients (1 with myeloid malignancy) carried somatic mutations in NFE2, which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in older adult patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring changes in somatic mutations and clinical manifestations prospectively may reveal mechanisms for malignant progression and inform clinical management. This trial was registered at www.clinicaltrials.gov as #NCT03854318.


Asunto(s)
Trastornos de la Coagulación Sanguínea Heredados , Trastornos de las Plaquetas Sanguíneas , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Anciano , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Trastornos Mieloproliferativos/genética , Neoplasias Hematológicas/genética , Genómica , Células Germinativas/patología
3.
Space Sci Rev ; 219(8): 81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046182

RESUMEN

The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).

4.
Blood ; 142(25): 2146-2158, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738626

RESUMEN

ABSTRACT: Deleterious germ line RUNX1 variants cause the autosomal dominant familial platelet disorder with associated myeloid malignancy (FPDMM), characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematologic malignancies (HMs). We launched a FPDMM natural history study and, from January 2019 to December 2021, enrolled 214 participants, including 111 patients with 39 different RUNX1 variants from 45 unrelated families. Seventy of 77 patients had thrombocytopenia, 18 of 18 had abnormal platelet aggregometry, 16 of 35 had decreased platelet dense granules, and 28 of 55 had abnormal bleeding scores. Nonmalignant bone marrows showed increased numbers of megakaryocytes in 12 of 55 patients, dysmegakaryopoiesis in 42 of 55, and reduced cellularity for age in 30 of 55 adult and 17 of 21 pediatric cases. Of 111 patients, 19 were diagnosed with HMs, including myelodysplastic syndrome, acute myeloid leukemia, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, and smoldering myeloma. Of those 19, 18 were relapsed or refractory to upfront therapy and referred for stem cell transplantation. In addition, 28 of 45 families had at least 1 member with HM. Moreover, 42 of 45 patients had allergic symptoms, and 24 of 30 had gastrointestinal (GI) symptoms. Our results highlight the importance of a multidisciplinary approach, early malignancy detection, and wider awareness of inherited disorders. This actively accruing, longitudinal study will genotype and phenotype more patients with FPDMM, which may lead to a better understanding of the disease pathogenesis and clinical course, which may then inform preventive and therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT03854318.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Trombocitopenia , Adulto , Humanos , Niño , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Estudios Longitudinales , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/complicaciones , Trombocitopenia/genética , Trastornos Mieloproliferativos/complicaciones , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/complicaciones
5.
bioRxiv ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36789433

RESUMEN

Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancies (FPDMM), which is characterized by thrombocytopenia and a life-long risk (35-45%) of hematological malignancies. We recently launched a longitudinal natural history study for patients with FPDMM at the NIH Clinical Center. Among 29 families with research genomic data, 28 different germline RUNX1 variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 24 of 54 (44.4%) non-malignant patients, somatic mutations were detected in at least one of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes. BCOR was the most frequently mutated gene (in 9 patients), and multiple BCOR mutations were identified in 4 patients. Mutations in 7 other CHIP or AML driver genes ( DNMT3A, TET2, NRAS, SETBP1, SF3B1, KMT2C , and LRP1B ) were also found in more than one non-malignant patient. Moreover, three unrelated patients (one with myeloid malignancy) carried somatic mutations in NFE2 , which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in elderly patients. In summary, there are diverse types of germline RUNX1 mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring dynamic changes of somatic mutations prospectively will benefit patients’ clinical management and reveal mechanisms for progression to myeloid malignancies. Key Points: Comprehensive genomic profile of patients with FPDMM with germline RUNX1 mutations. Rising clonal hematopoiesis related secondary mutations that may lead to myeloid malignancies.

6.
Blood ; 141(17): 2100-2113, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36542832

RESUMEN

The choice to postpone treatment while awaiting genetic testing can result in significant delay in definitive therapies in patients with severe pancytopenia. Conversely, the misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of an affected family member as a stem cell donor. To predict the likelihood of patients having acquired or inherited BMF, we developed a 2-step data-driven machine-learning model using 25 clinical and laboratory variables typically recorded at the initial clinical encounter. For model development, patients were labeled as having acquired or inherited BMF depending on their genomic data. Data sets were unbiasedly clustered, and an ensemble model was trained with cases from the largest cluster of a training cohort (n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised underrepresented BMF phenotypes and was not included in the next step of data modeling because of a small sample size. The ensemble cluster A-specific model was accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize patients for genetic testing or for expeditious treatment.


Asunto(s)
Anemia Aplásica , Enfermedades de la Médula Ósea , Pancitopenia , Humanos , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/terapia , Diagnóstico Diferencial , Anemia Aplásica/diagnóstico , Anemia Aplásica/genética , Anemia Aplásica/terapia , Trastornos de Fallo de la Médula Ósea/diagnóstico , Pancitopenia/diagnóstico
7.
Astrobiology ; 22(9): 1116-1128, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35984944

RESUMEN

Increasing interest in the detection of biogenic signatures, such as amino acids, on icy moons and bodies within our solar system has led to the development of compact in situ instruments. Given the expected dilute biosignatures and high salinities of these extreme environments, purification of icy samples before analysis enables increased detection sensitivity. Herein, we outline a novel compact cation exchange method to desalinate proteinogenic amino acids in solution, independent of the type and concentration of salts in the sample. Using a modular microfluidic device, initial experiments explored operational limits of binding capacity with phenylalanine and three model cations, Na+, Mg2+, and Ca2+. Phenylalanine recovery (94-17%) with reduced conductivity (30-200 times) was seen at high salt-to-amino-acid ratios between 25:1 and 500:1. Later experiments tested competition between mixtures of 17 amino acids and other chemistries present in a terrestrial ocean sample. Recoveries ranged from 11% to 85% depending on side chain chemistry and cation competition, with concentration shown for select high affinity amino acids. This work outlines a nondestructive amino acid purification device capable of coupling to multiple downstream analytical techniques for improved characterization of icy samples at remote ocean worlds.


Asunto(s)
Aminoácidos , Microfluídica , Aminoácidos/análisis , Cationes/análisis , Cromatografía , Océanos y Mares , Fenilalanina
8.
Astrobiology ; 21(1): 60-82, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121252

RESUMEN

Hydrothermal spring deposits host unique microbial ecosystems and have the capacity to preserve microbial communities as biosignatures within siliceous sinter layers. This quality makes terrestrial hot springs appealing natural laboratories to study the preservation of both organic and morphologic biosignatures. The discovery of hydrothermal deposits on Mars has called attention to these hot springs as Mars-analog environments, driving forward the study of biosignature preservation in these settings to help prepare future missions targeting the recovery of biosignatures from martian hot-spring deposits. This study quantifies the fatty acid load in three Icelandic hot-spring deposits ranging from modern and inactive to relict. Samples were collected from both the surface and 2-18 cm in depth to approximate the drilling capabilities of current and upcoming Mars rovers. To determine the preservation potential of organics in siliceous sinter deposits, fatty acid analyses were performed with pyrolysis-gas chromatography-mass spectrometry (GC-MS) utilizing thermochemolysis with tetramethylammonium hydroxide (TMAH). This technique is available on both current and upcoming Mars rovers. Results reveal that fatty acids are often degraded in the subsurface relative to surface samples but are preserved and detectable with the TMAH pyrolysis-GC-MS method. Hot-spring mid-to-distal aprons are often the best texturally and geomorphically definable feature in older, degraded terrestrial sinter systems and are therefore most readily detectable on Mars from orbital images. These findings have implications for the detection of organics in martian hydrothermal systems as they suggest that organics might be detectable on Mars in relatively recent hot-spring deposits, but preservation likely deteriorates over geological timescales. Rovers with thermochemolysis pyrolysis-GC-MS instrumentation may be able to detect fatty acids in hot-spring deposits if the organics are relatively young; therefore, martian landing site and sample selection are of paramount importance in the search for organics on Mars.


Asunto(s)
Manantiales de Aguas Termales , Marte , Ecosistema , Exobiología , Medio Ambiente Extraterrestre , Ácidos Grasos , Islandia
9.
Astrobiology ; 19(4): 522-546, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30869535

RESUMEN

The Mars Curiosity rover carries a diverse instrument payload to characterize habitable environments in the sedimentary layers of Aeolis Mons. One of these instruments is Sample Analysis at Mars (SAM), which contains a mass spectrometer that is capable of detecting organic compounds via pyrolysis gas chromatography mass spectrometry (py-GC-MS). To identify polar organic molecules, the SAM instrument carries the thermochemolysis reagent tetramethylammonium hydroxide (TMAH) in methanol (hereafter referred to as TMAH). TMAH can liberate fatty acids bound in macromolecules or chemically bound monomers associated with mineral phases and make these organics detectable via gas chromatography mass spectrometry (GC-MS) by methylation. Fatty acids, a type of carboxylic acid that contains a carboxyl functional group, are of particular interest given their presence in both biotic and abiotic materials. This work represents the first analyses of a suite of Mars-analog samples using the TMAH experiment under select SAM-like conditions. Samples analyzed include iron oxyhydroxides and iron oxyhydroxysulfates, a mixture of iron oxides/oxyhydroxides and clays, iron sulfide, siliceous sinter, carbonates, and shale. The TMAH experiments produced detectable signals under SAM-like pyrolysis conditions when organics were present either at high concentrations or in geologically modern systems. Although only a few analog samples exhibited a high abundance and variety of fatty acid methyl esters (FAMEs), FAMEs were detected in the majority of analog samples tested. When utilized, the TMAH thermochemolysis experiment on SAM could be an opportunity to detect organic molecules bound in macromolecules on Mars. The detection of a FAME profile is of great astrobiological interest, as it could provide information regarding the source of martian organic material detected by SAM.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Ácidos Grasos/análisis , Marte , Minerales/química , Compuestos de Amonio Cuaternario/química , Nave Espacial , Temperatura , Ácidos Carboxílicos/química , Arcilla/química , Ésteres/análisis , Ácidos Grasos/química , Cromatografía de Gases y Espectrometría de Masas , Hierro/química , Metanol/química , Dióxido de Silicio/química , Factores de Tiempo
10.
New Phytol ; 208(4): 1241-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26189495

RESUMEN

Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.


Asunto(s)
Cannabinoides/genética , Cannabis/genética , Duplicación de Gen , Genes de Plantas , Oxidorreductasas Intramoleculares/genética , Fenotipo , Filogenia , Alelos , Cannabinoides/metabolismo , Cannabis/metabolismo , Cruzamientos Genéticos , Dronabinol/metabolismo , Ligamiento Genético , Marcadores Genéticos , Oxidorreductasas Intramoleculares/metabolismo , Sitios de Carácter Cuantitativo , Semillas , Especificidad de la Especie
11.
J Anim Ecol ; 79(6): 1193-203, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20673235

RESUMEN

1. The extent to which plant-herbivore feeding interactions are specialized is key to understand the processes maintaining the diversity of both tropical forest plants and their insect herbivores. However, studies documenting the full complexity of tropical plant-herbivore food webs are lacking. 2. We describe a complex, species-rich plant-herbivore food web for lowland rain forest in Papua New Guinea, resolving 6818 feeding links between 224 plant species and 1490 herbivore species drawn from 11 distinct feeding guilds. By standardizing sampling intensity and the phylogenetic diversity of focal plants, we are able to make the first rigorous and unbiased comparisons of specificity patterns across feeding guilds. 3. Specificity was highly variable among guilds, spanning almost the full range of theoretically possible values from extreme trophic generalization to monophagy. 4. We identify guilds of herbivores that are most likely to influence the composition of tropical forest vegetation through density-dependent herbivory or apparent competition. 5. We calculate that 251 herbivore species (48 of them unique) are associated with each rain forest tree species in our study site so that the ∼200 tree species coexisting in the lowland rain forest community are involved in ∼50,000 trophic interactions with ∼9600 herbivore species of insects. This is the first estimate of total herbivore and interaction number in a rain forest plant-herbivore food web. 6. A comprehensive classification of insect herbivores into 24 guilds is proposed, providing a framework for comparative analyses across ecosystems and geographical regions.


Asunto(s)
Conducta Alimentaria/fisiología , Cadena Alimentaria , Insectos/clasificación , Insectos/fisiología , Plantas/clasificación , Árboles , Animales , Biodiversidad , Papúa Nueva Guinea , Clima Tropical
12.
Proc Natl Acad Sci U S A ; 107(11): 5041-6, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20202924

RESUMEN

Comparative population genetics of ecological guilds can reveal generalities in patterns of differentiation bearing on hypotheses regarding the origin and maintenance of community diversity. Contradictory estimates of host specificity and beta diversity in tropical Lepidoptera (moths and butterflies) from New Guinea and the Americas have sparked debate on the role of host-associated divergence and geographic isolation in explaining latitudinal diversity gradients. We sampled haplotypes of mitochondrial cytochrome c oxidase I from 28 Lepidoptera species and 1,359 individuals across four host plant genera and eight sites in New Guinea to estimate population divergence in relation to host specificity and geography. Analyses of molecular variance and haplotype networks indicate varying patterns of genetic structure among ecologically similar sympatric species. One-quarter lacked evidence of isolation by distance or host-associated differentiation, whereas 21% exhibited both. Fourteen percent of the species exhibited host-associated differentiation without geographic isolation, 18% showed the opposite, and 21% were equivocal, insofar as analyses of molecular variance and haplotype networks yielded incongruent patterns. Variation in dietary breadth among community members suggests that speciation by specialization is an important, but not universal, mechanism for diversification of tropical Lepidoptera. Geographically widespread haplotypes challenge predictions of vicariance biogeography. Dispersal is important, and Lepidoptera communities appear to be highly dynamic according to the various phylogeographic histories of component species. Population genetic comparisons among herbivores of major tropical and temperate regions are needed to test predictions of ecological theory and evaluate global patterns of biodiversity.


Asunto(s)
ADN Mitocondrial/genética , Ecosistema , Genética de Población , Lepidópteros/genética , Animales , Geografía , Haplotipos/genética , Datos de Secuencia Molecular , Nueva Guinea , Especificidad de la Especie
13.
Am J Bot ; 97(12): 1999-2006, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21616847

RESUMEN

PREMISE OF THE STUDY: Pollination patterns determine the reproductive neighborhood size of plants, the connectivity of populations, and the impacts of habitat fragmentation. We characterized pollination in three populations of Quercus macrocarpa occurring in a highly altered landscape in northeastern Illinois to determine whether isolated remnant stands were reproductively isolated. • METHODS: We used microsatellites to genotype all adults and 787 acorns from two isolated savanna remnants and a stand in an old-growth forest. One isolated remnant occurred in a highly urbanized/industrialized landscape, and one occurred in an agricultural landscape. Parentage assignment was used to assess pollen-mediated gene flow. • KEY RESULTS: Pollen donors from outside the study sites accounted for between 46% and 53% of paternities and did not differ significantly among sites, indicating that similar high levels of gene flow occurred at all three sites. Within stands, the mean pollination distance ranged from 42 to 70 meters, and when accounting for outside pollinations, mean pollination distances were well over 100 meters. Genetic diversity of incoming pollen was extremely high in all three stands. The number of effective pollen donors, N(ep), calculated from paternity assignment was higher than that estimated by an indirect correlated paternity approach. • CONCLUSIONS: Our findings indicate that extremely isolated stands of oaks are unlikely to be genetically and reproductively isolated, and remnant stands may contribute to maintaining genetic connectivity in highly modified landscapes.

14.
Forensic Sci Int ; 165(1): 64-70, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16632287

RESUMEN

As highly polymorphic DNA markers become increasingly available for a wide range of plant and animal species, there will be increasing opportunities for applications to forensic investigations. To date, however, relatively few studies have reported using DNA profiles of non-human species to place suspects at or near crime scenes. Here we describe an investigation of a double homicide of a female and her near-term fetus. Leaf material taken from a suspect's vehicle was identified to be that of sand live oak, Quercus geminata, the same tree species that occurred near a shallow grave where the victims were found. Quercus-specific DNA microsatellites were used to genotype both dried and fresh material from trees located near the burial site and from the material taken from the suspect's car. Samples from the local population of Q. geminata were also collected and genotyped in order to demonstrate that genetic variation at four microsatellite loci was sufficient to assign leaves to an individual tree with high statistical certainty. The cumulative average probability of identity for these four loci was 2.06x10(-6). DNA was successfully obtained from the dried leaf material although PCR amplification was more difficult than amplification of DNA from fresh leaves. The DNA profiles of the dried leaves from the suspect's car did not match those of the trees near the crime scene. Although this investigation did not provide evidence that could be used against the suspect, it does demonstrate the potential for plant microsatellite markers providing physical evidence that links plant materials to live plants at or near crime scenes.


Asunto(s)
ADN de Plantas/genética , Medicina Legal/métodos , Repeticiones de Microsatélite , Hojas de la Planta/genética , Quercus/genética , Femenino , Marcadores Genéticos , Genotipo , Homicidio , Humanos , Reacción en Cadena de la Polimerasa , Embarazo
15.
Am J Bot ; 89(11): 1792-8, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21665607

RESUMEN

Many oak species are interfertile, and morphological and genetic evidence for hybridization is widespread. Here we use DNA microsatellite markers to characterize hybridization between two closely related oak species in a mixed stand in central coastal California, Quercus lobata (valley oak) and Q. douglasii (blue oak) (Fagaceae). Genotypes from four microsatellite loci indicate that many alleles are shared between the two species. However, each species harbors unique alleles, and allele frequencies differ significantly. A Bayesian analysis of genetic structure in the stand identified two highly differentiated genetic clusters, essentially corresponding to species assignment based on morphology. Data from the four loci were sufficient to assign all 135 trees to one of the two species. In addition, five putative hybrid individuals having intermediate morphologies could be assigned genetically to one or the other species, and all but one had low probability of hybrid ancestry. Overally, only six (4.6%) trees showed >0.05 probability of hybrid ancestry, in all cases their probabilities for nonhybrid ancestry were substantially higher. We conclude that adult hybrids of Q. douglasii × Q. lobata are rare at this site and plasticity in morphological characters may lead to overestimates of hybridization among Quercus species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...