Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Biophys Mol Biol ; 72(3): 299-328, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10581972

RESUMEN

The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.


Asunto(s)
Ciclo Celular , Péptido Sintasas/química , Transducción de Señal , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis , Secuencia de Consenso , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Fosforilación , Proteínas Ligasas SKP Cullina F-box
2.
Genes Dev ; 12(5): 692-705, 1998 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-9499404

RESUMEN

In budding yeast, ubiquitination of the cyclin-dependent kinase (Cdk) inhibitor Sic1 is catalyzed by the E2 ubiquitin conjugating enzyme Cdc34 in conjunction with an E3 ubiquitin ligase complex composed of Skp1, Cdc53 and the F-box protein, Cdc4 (the SCFCdc4 complex). Skp1 binds a motif called the F-box and in turn F-box proteins appear to recruit specific substrates for ubiquitination. We find that Skp1 interacts with Cdc53 in vivo, and that Skp1 bridges Cdc53 to three different F-box proteins, Cdc4, Met30, and Grr1. Cdc53 contains independent binding sites for Cdc34 and Skp1 suggesting it functions as a scaffold protein within an E2/E3 core complex. F-box proteins show remarkable functional specificity in vivo: Cdc4 is specific for degradation of Sic1, Grr1 is specific for degradation of the G1 cyclin Cln2, and Met30 is specific for repression of methionine biosynthesis genes. In contrast, the Cdc34-Cdc53-Skp1 E2/E3 core complex is required for all three functions. Combinatorial control of SCF complexes may provide a basis for the regulation of diverse cellular processes.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin , Proteínas F-Box , Ligasas/metabolismo , Metionina/biosíntesis , Proteínas de Saccharomyces cerevisiae , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas , Levaduras/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , División Celular , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Células Híbridas , Proteínas Represoras/metabolismo , Proteínas Quinasas Asociadas a Fase-S , Enzimas Ubiquitina-Conjugadoras , Ubiquitinas/metabolismo , Levaduras/genética
3.
Cell ; 91(2): 209-19, 1997 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-9346238

RESUMEN

We have reconstituted the ubiquitination pathway for the Cdk inhibitor Sic1 using recombinant proteins. Skp1, Cdc53, and the F-box protein Cdc4 form a complex, SCFCdc4, which functions as a Sic1 ubiquitin-ligase (E3) in combination with the ubiquitin conjugating enzyme (E2) Cdc34 and E1. Cdc4 assembled with Skp1 functions as the receptor that selectively binds phosphorylated Sic1. Grr1, an F-box protein involved in Cln destruction, forms complexes with Skp1 and Cdc53 and binds phosphorylated Cln1 and Cln2, but not Sic1. Because the constituents of the SCF complex are members of protein families, SCFCdc4 is likely to serve as the prototype for a large class of E3s formed by combinatorial interactions of related family members. SCF complexes couple protein kinase signaling pathways to the control of protein abundance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin , Proteínas de Drosophila , Proteínas F-Box , Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/fisiología , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas , Ubiquitinas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Coenzimas/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Metaloproteínas/metabolismo , Fosforilación , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinasas Asociadas a Fase-S , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras
4.
J Immunol ; 158(10): 4862-71, 1997 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-9144502

RESUMEN

Pleckstrin, originally described as a major substrate of protein kinase C (PKC) in platelets, was found to be highly expressed in human neutrophils (intracellular concentration, approximately 15 microM). As PKC isoforms play an important role in mediating neutrophil antimicrobial responses, we studied the regulation of pleckstrin phosphorylation in response to inflammatory stimuli. Following treatment of neutrophils with FMLP, 12-O-tetradecanoylphorbol-13-acetate, or opsonized zymosan, pleckstrin was rapidly phosphorylated, which resulted in a shift in its electrophoretic mobility. Several lines of evidence suggest that pleckstrin is phosphorylated in part by a nonconventional PKC following stimulation by FMLP: 1) chelation of intracellular Ca2+ had only a partial inhibitory effect; 2) diacylglycerol kinase inhibitors shortened the duration of phosphorylation, while the phosphatidic acid phosphohydrolase antagonist propranolol extended it; and 3) wortmannin and erbstatin blocked the phosphorylation of pleckstrin. These results suggest that nonconventional PKC isoforms, possibly delta or zeta, mediate the phosphorylation of pleckstrin. Both PKCdelta and -zeta are expressed in human neutrophils. Increased association of pleckstrin with both microsomes and with the cytoskeleton was observed in stimulated cells. These findings suggest that phosphorylation by nonconventional PKC isoforms induces a conformational change in pleckstrin that promotes its interaction with membranes and/or with the cytoskeleton. Such a translocation may serve to target proteins or lipids recognized by pleckstrin homology domains to sites where they can contribute to the microbicidal response.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Neutrófilos/metabolismo , Fosfoproteínas , Androstadienos/farmacología , Calcio/fisiología , Compartimento Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Mapeo Peptídico , Fosfatidilinositol 3-Quinasas , Fosfopéptidos/análisis , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polienos/farmacología , Proteína Quinasa C/fisiología , Proteínas Tirosina Quinasas/fisiología , Sirolimus , Factores de Tiempo , Wortmanina
5.
Cell ; 86(3): 453-63, 1996 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-8756727

RESUMEN

In budding yeast, cell division is initiated in late G1 phase once the Cdc28 cyclin-dependent kinase is activated by the G1 cyclins Cln1, Cln2, and Cln3. The extreme instability of the Cln proteins couples environmental signals, which regulate Cln synthesis, to cell division. We isolated Cdc53 as a Cln2-associated protein and show that Cdc53 is required for Cln2 instability and ubiquitination in vivo. The Cln2-Cdc53 interaction, Cln2 ubiquitination, and Cln2 instability all depend on phosphorylation of Cln2. Cdc53 also binds the E2 ubiquitin-conjugating enzyme, Cdc34. These findings suggest that Cdc53 is a component of a ubiquitin-protein ligase complex that targets phosphorylated G1 cyclins for degradation by the ubiquitin-proteasome pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin , Ciclinas/metabolismo , Fase G1 , Proteínas de Saccharomyces cerevisiae , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Línea Celular , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Proteínas Fúngicas/metabolismo , Ligasas/genética , Ligasas/metabolismo , Datos de Secuencia Molecular , Mutación , Fosforilación , Plásmidos , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas
6.
Biochem J ; 314 ( Pt 3): 937-42, 1996 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-8615792

RESUMEN

During platelet activation, receptor-coupled phospholipid hydrolysis stimulates protein kinase C (PKC) and results in the phosphorylation of several proteins, the most prominent being pleckstrin. Pleckstrin is composed of two repeated domains, now called pleckstrin homology (PH) domains, separated by a spacer region that contains several consensus PKC phosphorylation sites. To determine the role of PKC-dependent phosphorylation in pleckstrin function, we mapped the phosphorylation sites in vivo of wild-type and site-directed mutants of pleckstrin expressed in COS cells. Phosphorylation was found to occur almost exclusively on Ser-113 and Ser-117 within the sequence 108-KFARKS*TRRS*IRL-120. Phosphorylation of these sites was confirmed by phosphorylation of the corresponding wild-type and mutant synthetic peptides in vitro.


Asunto(s)
Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Fosfoproteínas , Proteína Quinasa C/metabolismo , Serina , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Chlorocebus aethiops , Codón , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Mapeo Peptídico , Fosfopéptidos/química , Fosfopéptidos/aislamiento & purificación , Fosforilación , Mutación Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfección , Tripsina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA