Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 919(1): 20-30, 2001 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-11689159

RESUMEN

In a previous study we demonstrated that injection (i.p.) of low doses of GM1 ganglioside in mice rapidly attenuates morphine's analgesic effects. This result is consonant with our electrophysiologic studies in nociceptive types of dorsal root ganglion (DRG) neurons in culture, which showed that exogenous GM1 rapidly increased the efficacy of excitatory (Gs-coupled) opioid receptor functions. By contrast, treatment of DRG neurons with the non-toxic B-subunit of cholera toxin (CTX-B) which binds selectively to GM1, blocked the excitatory, but not inhibitory, effects of morphine and other bimodally-acting opioid agonists, thereby resulting in a net increase in inhibitory opioid potency. The present study provides more direct evidence that endogenous GM1 plays a physiologic role in regulating excitatory opioid receptor functions in vivo by demonstrating that cotreatment with remarkably low doses of CTX-B (10 ng/kg, s.c.) selectively blocks hyperalgesic effects elicited by morphine or by a kappa opioid agonist, thereby unmasking potent opioid analgesia. These results are comparable to the effects of cotreatment of mice with morphine plus an ultra-low dose of the opioid antagonist, naltrexone (NTX) which blocks opioid-induced hyperalgesic effects, unmasking potent opioid analgesia. Low-dose NTX selectively blocks excitatory opioid receptors at their recognition site, whereas CTX-B binds to, and interferes with, a putative allosteric GM1 regulatory site on excitatory opioid receptors. Furthermore, chronic cotreatment of mice with morphine plus CTX-B attenuates development of opioid tolerance and physical dependence, as previously shown to occur during cotreatment with low-dose NTX.


Asunto(s)
Toxina del Cólera/farmacología , Tolerancia a Medicamentos , Hiperalgesia , Antagonistas de Narcóticos , Trastornos Relacionados con Opioides , Dimensión del Dolor , Receptores Opioides/fisiología , Adyuvantes Inmunológicos/farmacología , Administración Oral , Analgésicos Opioides/farmacología , Animales , Células Cultivadas , Toxina del Cólera/administración & dosificación , Esquema de Medicación , Tolerancia a Medicamentos/inmunología , Calor , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Inyecciones Subcutáneas , Masculino , Ratones , Morfina/farmacología , Naltrexona/administración & dosificación , Trastornos Relacionados con Opioides/fisiopatología , Dimensión del Dolor/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/etiología , Síndrome de Abstinencia a Sustancias/prevención & control
2.
Brain Res ; 888(1): 75-82, 2001 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-11146054

RESUMEN

Our previous electrophysiologic studies on nociceptive types of dorsal root ganglion (DRG) neurons in culture demonstrated that extremely low fM-nM concentrations of morphine and many other bimodally-acting mu, delta and kappa opioid agonists can elicit direct excitatory opioid receptor-mediated effects, whereas higher (microM) opioid concentrations evoked inhibitory effects. Cotreatment with pM naloxone or naltrexone (NTX) plus fM-nM morphine blocked the excitatory effects and unmasked potent inhibitory effects of these low opioid concentrations. In the present study, hot-water-immersion tail-flick antinociception assays at 52 degrees C on mice showed that extremely low doses of morphine (ca. 0.1 microg/kg) can, in fact, elicit acute hyperalgesic effects, manifested by rapid onset of decreases in tail-flick latency for periods >3 h after drug administration. Cotreatment with ultra-low-dose NTX (ca. 1-100 pg/kg) blocks this opioid-induced hyperalgesia and unmasks potent opioid analgesia. The consonance of our in vitro and in vivo evidence indicates that doses of morphine far below those currently required for clinical treatment of pain may become effective when opioid hyperalgesic effects are blocked by coadministration of appropriately low doses of opioid antagonists. This low-dose-morphine cotreatment procedure should markedly attenuate morphine tolerance, dependence and other aversive side-effects.


Asunto(s)
Analgésicos Opioides/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Morfina/farmacología , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Enfermedad Aguda , Animales , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos/fisiología , Etorfina/farmacología , Calor , Masculino , Ratones , Dependencia de Morfina/prevención & control , Umbral del Dolor/efectos de los fármacos , Receptores Opioides/fisiología
3.
Brain Res ; 856(1-2): 227-35, 2000 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-10677630

RESUMEN

10-fold higher doses in SW mice. Furthermore, cotreatment of 129/SvEv mice with morphine plus a low dose of naltrexone (ca. 0.1 microgram/kg) that markedly enhances and prolongs morphine's antinociceptive effects in SW mice did not enhance, and often attenuated6 h. The marked GM1-induced attenuation of morphine's antinociceptive effects in 129/SvEv mice may be due to conversion of some of the opioid receptors in these mice from an inhibitory Gi/Go-coupled to an excitatory Gs-coupled mode. Exogenous GM1 supplementation can, therefore, reverse the anomalous lack of morphine tolerance displayed by this mouse strain in comparison to SW and other mice. The present study may provide insights into factors that regulate the marked variability in nociceptive sensitivity and opioid tolerance/dependence liability among individual humans.


Asunto(s)
Tolerancia a Medicamentos , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/fisiología , Morfina/farmacología , Receptores Opioides/fisiología , Animales , Gangliósido G(M1)/deficiencia , Masculino , Ratones , Ratones Endogámicos , Naltrexona/farmacología , Receptores Opioides/efectos de los fármacos , Factores de Tiempo
4.
Pain ; 84(2-3): 121-31, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10666516

RESUMEN

Recent preclinical and clinical studies have demonstrated that cotreatments with extremely low doses of opioid receptor antagonists can markedly enhance the efficacy and specificity of morphine and related opioid analgesics. Our correlative studies of the cotreatment of nociceptive types of dorsal-root ganglion neurons in vitro and mice in vivo with morphine plus specific opioid receptor antagonists have shown that antagonism of Gs-coupled excitatory opioid receptor functions by cotreatment with ultra-low doses of clinically available opioid antagonists, e.g. naloxone and naltrexone, markedly enhances morphine's antinociceptive potency and simultaneously attenuates opioid tolerance and dependence. These preclinical studies in vitro and in vivo provide cellular mechanisms that can readily account for the unexpected enhancement of morphine's analgesic potency in recent clinical studies of post-surgical pain patients cotreated with morphine plus low doses of naloxone or nalmefene. The striking consistency of these multidisciplinary studies on nociceptive neurons in culture, behavioral assays on mice and clinical trials on post-surgical pain patients indicates that clinical treatment of pain can, indeed, be significantly improved by administering morphine or other conventional opioid analgesics together with appropriately low doses of an excitatory opioid receptor antagonist.


Asunto(s)
Analgésicos Opioides/farmacología , Morfina/farmacología , Antagonistas de Narcóticos/farmacología , Narcóticos/farmacología , Animales , Sinergismo Farmacológico , Tolerancia a Medicamentos , Trastornos Relacionados con Sustancias/prevención & control
5.
Trends Pharmacol Sci ; 19(9): 358-65, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9786023

RESUMEN

Studies of direct excitatory effects elicited by opioid agonists on various types of neurone have been confirmed and expanded in numerous laboratories following the initial findings reviewed previously by Stanley Crain and Ke-Fei Shen. However, the critical role of the endogenous glycolipid GM1 ganglioside in regulating Gs-coupled, excitatory opioid receptor functions has not been addressed in any of the recent reviews of opioid stimulatory mechanisms. This article by Stanley Crain and Ke-Fei Shen focuses on crucial evidence that the concentration of GM1 in neurones might, indeed, play a significant role in the modulation of opioid receptor-mediated analgesia, tolerance and dependence.


Asunto(s)
Analgesia , Analgésicos Opioides/farmacología , Gangliósido G(M1)/farmacología , Proteínas de Unión al GTP/metabolismo , Receptores Opioides/efectos de los fármacos , Animales , Células CHO , Cricetinae , Tolerancia a Medicamentos , Gangliósido G(M1)/fisiología , Humanos , Antagonistas de Narcóticos/farmacología , Trastornos Relacionados con Opioides/etiología , Receptores Opioides/agonistas
6.
Ann N Y Acad Sci ; 845: 106-25, 1998 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-9668346

RESUMEN

Electrophysiologic studies of dorsal-root ganglion (DRG) neurons in culture have demonstrated both excitatory (Gs-coupled) as well as inhibitory (Gi/Go-coupled) opioid receptor-mediated actions. Brief treatment of DRG neurons with cholera toxin-beta which binds specifically to GM1 sites on neuronal membranes, selectively blocks opioid excitatory but not inhibitory effects. Conversely, after brief treatment of DRG neurons with GM1, but not with GM2, GM3, or other related gangliosides, the threshold concentration of opioid agonists for eliciting excitatory effects is markedly decreased from nM to pM-fM levels and opioid antagonists, for example, naloxone (NLX), at low concentrations paradoxically elicit excitatory effects. These studies suggest that the excitatory opioid supersensitivity of GM1-treated DRG neurons is due primarily to increased efficacy of excitatory opioid-receptor activation of Gs. Recent studies of cloned delta opioid receptors transfected into CHO cells suggest that this supersensitivity of GM1-treated DRG neurons may be further augmented by rapid conversion of many opioid receptors from a Gi/Go-coupled inhibitory mode to a Gs-coupled excitatory mode. The opioid excitatory supersensitivity elicited in DRG neurons by acute elevation of exogenous GM1 provides novel insights into mechanisms underlying opioid tolerance and dependence, since remarkably similar supersensitivity occurs in DRG and other neurons after chronic treatment with morphine or other opioid agonists that upregulate endogenous GM1.


Asunto(s)
Gangliósido G(M1)/farmacología , Neuronas/fisiología , Receptores Opioides/fisiología , Animales , Células Cultivadas , Toxina del Cólera/farmacología , Proteínas de Unión al GTP/metabolismo , Ganglios Espinales/fisiología , Humanos , Modelos Neurológicos , Naloxona/farmacología , Neuronas/efectos de los fármacos , Receptores Opioides/efectos de los fármacos , Receptores Opioides delta/efectos de los fármacos , Receptores Opioides delta/fisiología
7.
Methods ; 16(3): 228-38, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10071063

RESUMEN

This article provides a broad overview of the significant roles that morphophysiologic analyses of organotypic cultures of neural tissues explanted in vitro-initiated during the 1950s-have played in stimulating the more recent development of techniques for transplantation of neural cells and tissues into specific regions of the central nervous system (CNS) in vivo. The demonstrations by Crain and co-workers in the 1950s and 1960s that fetal rodent and human CNS neurons can continue to develop a remarkable degree of mature structure and function during many months of complete isolation in culture provided crucial evidence that development of many organotypic properties of nerve cells is regulated by epigenetic factors that ensure rather stereotyped expression despite wide variations in environmental conditions. These in vitro studies strongly suggested that fetal neural cells should, indeed, be capable of even more highly organotypic development after transplantation in vivo, as has been elegantly demonstrated by many of the successful CNS transplantation studies reviewed here.


Asunto(s)
Sistema Nervioso Central/fisiología , Red Nerviosa/fisiología , Técnicas de Cultivo de Órganos , Sinapsis/fisiología , Animales , Trasplante de Tejido Encefálico , Gatos , Trasplante de Células , Embrión de Pollo , Trasplante de Tejido Fetal , Ganglios Espinales/fisiología , Humanos , Ratones , Neuronas/trasplante , Ratas
8.
Brain Res ; 757(2): 176-90, 1997 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-9200746

RESUMEN

In previous studies we showed that low (pM) concentrations of naloxone (NLX), naltrexone (NTX) or etorphine selectively antagonize excitatory, but not inhibitory, opioid receptor-mediated functions in nociceptive types of sensory neurons in culture. Cotreatment of these neurons with pM NTX or etorphine not only results in marked enhancement of the inhibitory potency of acutely applied nM morphine [or other bimodally-acting (inhibitory/excitatory) opioid agonists], but also prevents development of cellular manifestations of tolerance and dependence during chronic exposure to microM morphine. These in vitro studies were confirmed in vivo by demonstrating that acute cotreatment of mice with morphine plus a remarkably low dose of NTX (ca. 10 ng/kg) does, in fact, enhance the antinociceptive potency of morphine, as measured by hot-water tail-flick assays. Furthermore, chronic cotreatment of mice with morphine plus low doses of NTX markedly attenuates development of naloxone-precipitated withdrawal-jumping in physical dependence assays. The present study provides systematic dose-response analyses indicating that NTX elicited optimal enhancement of morphine's antinociceptive potency in mice when co-administered (i.p.) at about 100 ng/kg together with morphine (3 mg/kg). Doses of NTX as low as 1 ng/kg or as high as 1 microg/kg were still effective, but to a lesser degree. Oral administration of NTX in the drinking water of mice was equally effective as i.p. injections in enhancing the antinociceptive potency of acute morphine injections and even more effective in attenuating development of tolerance and NLX-precipitated withdrawal-jumping during chronic cotreatment. Cotreatment with a subanalgesic dose of etorphine (10 ng/kg) was equally effective as NTX in enhancing morphine's antinociceptive potency and attenuating withdrawal-jumping after chronic exposure. These studies provide a rationale for the clinical use of ultra-low-dose NTX or etorphine so as to increase the antinociceptive potency while attenuating the tolerance/dependence liability of morphine or other conventional bimodally-acting opioid analgesics.


Asunto(s)
Analgésicos Opioides/farmacología , Tolerancia a Medicamentos/fisiología , Etorfina/administración & dosificación , Morfina/farmacología , Naltrexona/administración & dosificación , Nociceptores/efectos de los fármacos , Trastornos Relacionados con Sustancias/fisiopatología , Administración Oral , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Etorfina/farmacología , Infusiones Parenterales , Masculino , Ratones , Ratones Endogámicos , Actividad Motora/efectos de los fármacos , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Narcóticos/efectos adversos , Narcóticos/farmacología , Síndrome de Abstinencia a Sustancias/psicología
9.
Brain Res ; 754(1-2): 303-6, 1997 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-9134988

RESUMEN

Etorphine is an non-selective opioid receptor agonist with very potent analgesic effect. Low concentrations (< nM) of most opioid receptor agonists decrease the K+ conductance (gK) in cultures of dissociated mouse dorsal root ganglion neurons regardless of the presence of Ba2+ However, low concentrations of etorphine, in contrast to all other opioids tested, decreased gK only in the absence of Ba2+. In the presence of Ba2+, pM-nM etorphine elicited dose-dependent increases, instead of decreases in gK. Higher concentrations of etorphine (> nM) not only increased gK but, in addition, appreciably increased a delayed-onset inward Ca2+ current during pulsed depolarization regardless of the presence of Ba2+.


Asunto(s)
Bario/farmacología , Canales de Calcio/fisiología , Etorfina/farmacología , Ganglios Espinales/fisiología , Neuronas/fisiología , Canales de Potasio/fisiología , Animales , Canales de Calcio/efectos de los fármacos , Células Cultivadas , Etorfina/antagonistas & inhibidores , Feto , Cinética , Ratones , Neuronas/efectos de los fármacos , Potasio/metabolismo , Canales de Potasio/efectos de los fármacos
10.
Neurochem Res ; 21(11): 1347-51, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8947924

RESUMEN

Electrophysiologic studies of opioid effects on nociceptive types of dorsal root ganglion (DRG) neurons in organotypic cultures have shown that morphine and most mu, delta, and kappa opioid agonists can elicit bimodal excitatory as well as inhibitory modulation of the action potential duration (APD) of these cells. Excitatory opioid effects have been shown to be mediated by opioid receptors that are coupled via Gs to cyclic AMP-dependent ionic conductances that prolong the APD, whereas inhibitory opioid effects are mediated by opioid receptors coupled via Gi/Go to ionic conductances that shorten the APD. Selective blockade of excitatory opioid receptor functions by low (ca. pM) concentrations of naloxone, naltrexone, etorphine and other specific agents markedly increases the inhibitory potency of morphine or other bimodally acting agonists and attenuates development of tolerance/dependence. These in vitro studies have been confirmed by tail-flick assays showing that acute co-treatment of mice with morphine plus ultra-low-dose naltrexone or etorphine remarkably enhances the antinociceptive potency of morphine whereas chronic co-treatment attenuates development of tolerance and naloxone-precipitated withdrawal-jumping symptoms.


Asunto(s)
Analgésicos Opioides/farmacología , Tolerancia a Medicamentos , Proteínas de Unión al GTP/fisiología , Morfina/farmacología , Neuronas/fisiología , Receptores Opioides delta/fisiología , Receptores Opioides kappa/fisiología , Receptores Opioides mu/fisiología , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Electrofisiología , Ganglios Espinales/fisiología , Humanos , Ratones , Dependencia de Morfina/fisiopatología , Neuronas/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Dolor , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
11.
Brain Res ; 741(1-2): 275-83, 1996 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-9001733

RESUMEN

The ultra-potent opioid analgesic, etorphine, elicits naloxone-reversible, dose-dependent inhibitory effects, i.e., shortening of the action potential duration (APD) of naive and chronic morphine-treated sensory dorsal root ganglion (DRG) neurons, even at low (pM-nM) concentrations. In contrast, morphine and most other opioid agonists elicit excitatory effects, i.e., APD prolongation, at these low opioid concentrations, require much higher (ca. 0.1-1 microM) concentrations to shorten the APD of naive neurons, and evoke only excitatory effects on chronic morphine-treated cells even at high > 1-10 microM concentrations. In addition to the potent agonist action of etorphine at mu-, delta- and kappa-inhibitory opioid receptors in vivo and on DRG neurons in culture, this opioid has also been shown to be a potent antagonist of excitatory mu-, delta- and kappa-receptor functions in naive and chronic morphine-treated DRG neurons. The present study demonstrates that the potent inhibitory APD-shortening effects of etorphine still occur in DRG neurons tested in the presence of a mixture of selective antagonists that blocks all mu-, delta- and kappa-opioid receptor-mediated functions, whereas addition of the epsilon (epsilon)-opioid-receptor antagonist, beta-endorphin(1-27) prevents these effects of etorphine. Furthermore, after markedly enhancing excitatory opioid receptor functions in DRG neurons by treatment with GM1 ganglioside or pertussis toxin, etorphine shows excitatory agonist action on non-mu-/delta-/kappa-opioid receptor functions in these sensory neurons, in contrast to its usual potent antagonist action on mu-, delta- and kappa-excitatory receptor functions in naive and even in chronic morphine-treated cells which become supersensitive to the excitatory effects of mu-, delta- and kappa-opioid agonists. This weak excitatory agonist action of etorphine on non-mu-/delta-/kappa-opioid receptor functions may account for the tolerance and dependence observed after chronic treatment with extremely high doses of etorphine in vivo.


Asunto(s)
Analgésicos Opioides/farmacología , Etorfina/farmacología , Gangliósido G(M1)/farmacología , Morfina/farmacología , Neuronas Aferentes/efectos de los fármacos , Toxina del Pertussis , Factores de Virulencia de Bordetella/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Técnicas de Cultivo , Relación Dosis-Respuesta a Droga , Electrofisiología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp , Receptores Opioides delta/efectos de los fármacos , Receptores Opioides kappa/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos
12.
Brain Res ; 701(1-2): 158-66, 1995 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-8925279

RESUMEN

The mechanism of action of the dimeric enkephalin peptide, biphalin (Tyr-D-Ala-Gly-Phe-NH2)2, which was previously shown to have remarkable high antinociceptive potency and low dependence liability in vivo, has now been studied by electrophysiologic analyses of its effects on the action potential duration (APD) of nociceptive types of sensory dorsal root ganglion (DRG) neurons in culture. Acute application of biphalin (pM-microM) elicited only dose-dependent, naloxone-reversible inhibitory (APD-shortening) effects on DRG neurons. Furthermore, at pM concentrations that evoked little or no alteration of the APD of DRG neurons biphalin selectively antagonized excitatory (APD-prolonging) effects of low (fM-nM) concentrations of bimodally-acting mu and delta opioid agonists and unmasked potent inhibitory effects of these opioids. This dual opioid inhibitory-agonist/excitatory-antagonist property of biphalin is remarkably similar to that previously observed in studies of the ultra-potent opioid analgesic, etorphine on DRG neurons and in sharp contrast to the excitatory agonist action of most mu, delta and kappa opioid alkaloids and peptides when tested at low (pM-nM) concentrations. Chronic treatment of DRG neurons with high (microM) concentrations of biphalin did not result in supersensitivity to the excitatory effects of naloxone nor in tolerance to opioid inhibition effects, in contrast to the excitatory opioid supersensitivity and tolerance that develop in chronic morphine- or DADLE-treated, but not chronic etorphine-treated, neurons. These studies on DRG neurons in vitro may help to account for the unexpectedly high antinociceptive potency and low dependence liability of biphalin as well as etorphine in vivo.


Asunto(s)
Analgésicos/farmacología , Encefalinas/farmacología , Antagonistas de Narcóticos , Neuronas Aferentes/efectos de los fármacos , Secuencia de Aminoácidos , Analgésicos Opioides/farmacología , Animales , Células Cultivadas , Técnicas de Cultivo , Tolerancia a Medicamentos , Electrofisiología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ratones , Datos de Secuencia Molecular , Morfina/farmacología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología
13.
J Neurosci Res ; 42(4): 493-503, 1995 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-8568936

RESUMEN

Prolongation of the action potential duration of dorsal root ganglion (DRG) neurons by low (nM) concentrations of opioids occurs through activation of excitatory opioid receptors that are positively coupled via Gs regulatory protein to adenylate cyclase. Previous results suggested GM1 ganglioside to have an essential role in regulating this excitatory response, but not the inhibitory (APD-shortening) response to higher (microM) opioid concentrations. Furthermore, it was proposed that synthesis of GM1 is upregulated by prolonged activation of excitatory opioid receptor functions. To explore this possibility we have utilized cultures of hybrid F11 cells to carry out closely correlated electrophysiological and biochemical analyses of the effects of chronic opioid treatment on a homogeneous population of clonal cells which express many functions characteristic of DRG neurons. We show that chronic opioid exposure of F11 cells does, in fact, result in elevated levels of GM1 as well as cyclic adenosine monophosphate (AMP), concomitant with the onset of opioid excitatory supersensitivity as manifested by naloxone-evoked decreases in voltage-dependent membrane K+ currents. Such elevation of GM1 would be expected to enhance the efficacy of excitatory opioid receptor activation of the Gs/adenylate cyclase/cyclic AMP system, thereby providing a positive feedback mechanism that may account for the remarkable supersensitivity of chronic opioid-treated neurons to the excitatory effects of opioid agonists as well as antagonists. These in vitro findings may provide novel insights into the mechanisms underlying naloxone-precipitated withdrawal syndromes and opioid-induced hyperalgesia after chronic opiate addiction in vivo.


Asunto(s)
AMP Cíclico/metabolismo , Leucina Encefalina-2-Alanina/farmacología , Gangliósido G(M1)/metabolismo , Naloxona/farmacología , Canales de Potasio/metabolismo , Animales , Células Cultivadas/citología , Electrofisiología , Gangliósido G(M1)/farmacología , Ganglios Espinales/citología , Gangliósidos/metabolismo , Células Híbridas , Neuroblastoma , Neuronas/citología , Potasio/metabolismo , Canales de Potasio/efectos de los fármacos , Factores de Tiempo , Células Tumorales Cultivadas/citología
14.
Proc Natl Acad Sci U S A ; 92(23): 10540-4, 1995 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-7479836

RESUMEN

Ultra-low picomolar concentrations of the opioid antagonists naloxone (NLX) and naltrexone (NTX) have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse dorsal root ganglion (DRG) neurons, whereas higher nanomolar concentrations antagonize excitatory and inhibitory opioid functions. Pretreatment of naive nociceptive types of DRG neurons with picomolar concentrations of either antagonist blocks excitatory prolongation of the Ca(2+)-dependent component of the action potential duration (APD) elicited by picomolar-nanomolar morphine and unmasks inhibitory APD shortening. The present study provides a cellular mechanism to account for previous reports that low doses of NLX and NTX paradoxically enhance, instead of attenuate, the analgesic effects of morphine and other opioid agonists. Furthermore, chronic cotreatment of DRG neurons with micromolar morphine plus picomolar NLX or NTX prevents the development of (i) tolerance to the inhibitory APD-shortening effects of high concentrations of morphine and (ii) supersensitivity to the excitatory APD-prolonging effects of nanomolar NLX as well as of ultra-low (femtomolar-picomolar) concentrations of morphine and other opioid agonists. These in vitro studies suggested that ultra-low doses of NLX or NTX that selectively block the excitatory effects of morphine may not only enhance the analgesic potency of morphine and other bimodally acting opioid agonists but also markedly attenuate their dependence liability. Subsequent correlative studies have now demonstrated that cotreatment of mice with morphine plus ultra-low-dose NTX does, in fact, enhance the antinociceptive potency of morphine in tail-flick assays and attenuate development of withdrawal symptoms in chronic, as well as acute, physical dependence assays.


Asunto(s)
Analgésicos Opioides/antagonistas & inhibidores , Morfina/antagonistas & inhibidores , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas Aferentes/efectos de los fármacos , Analgesia , Animales , Conducta Animal , Técnicas de Cultivo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Tolerancia a Medicamentos , Electrofisiología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ratones , Naltrexona/farmacología , Dimensión del Dolor , Síndrome de Abstinencia a Sustancias , Trastornos Relacionados con Sustancias
15.
Brain Res ; 696(1-2): 97-105, 1995 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-8574691

RESUMEN

The effects of the mu opioid receptor agonists, morphine and Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAGO), the delta opioid receptor agonist, Tyr-D-Pen-Gly-Phe-D-penicillamine (DPDPE) and the kappa-opioid receptor agonist, dynorphin A-(1-13) on the whole-cell K+ currents (IK) of cultured mouse DRG neurons and neuroblastoma X DRG neuron hybrid F11 cells were studied. These opioid ligands all elicited dual effects. Low concentrations (< nM) usually elicited a transient increase in IK (within 1 min), followed by a sustained decrease in IK. In contrast, microM concentrations rapidly elicited a sustained increase in IK. After brief treatment with cholera toxin subunit B (CTX-B), the usual sustained decrease in IK evoked by < nM opioid agonists no longer occurred. Low concentrations then elicited only a sustained increase in IK. On the other hand, after chronic treatment with pertussis toxin (PTX), the usual microM opioid-induced increases in IK no longer occurred and more than half of the cells responded with a sustained decrease of IK to microM as well as nM opioids. The results suggest that mu, delta and kappa opioid receptors are each coupled to K+ channels through CTX-B- and PTX-sensitive transduction systems. Both systems have similar threshold concentrations to opioids. Activation of the CTX-B-sensitive opioid receptor/transduction system resulted in a decrease in K+ conductance of the cell which is generally associated with an increase in neuronal excitability. Activation of the other system resulted in an increase in K+ conductance which will, in general, decrease neuronal excitability. The net change in the IK depends upon which effect predominates. The dominance at different opioid concentrations may depend on the relative efficacies of the coupling of these two systems to K+ channels.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Ganglios Espinales/metabolismo , Neuroblastoma/metabolismo , Canales de Potasio/metabolismo , Receptores Opioides/agonistas , Secuencia de Aminoácidos , Animales , Toxina del Cólera/farmacología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Células Híbridas , Ratones , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Toxina del Pertussis , Canales de Potasio/efectos de los fármacos , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Factores de Virulencia de Bordetella/farmacología
16.
Brain Res ; 694(1-2): 103-10, 1995 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-8974633

RESUMEN

Chronic morphine-treated dorsal-root ganglion (DRG) neurons in DRG/spinal cord explant cultures were previously shown to become supersensitive to the excitatory effects of remarkably low concentrations of the opioid agonists, morphine and dynorphin, and the opioid antagonist, naloxone. The present study demonstrates that this opioid excitatory supersensitivity of chronic morphine-treated DRG neurons (1 microM for > 1 week) is retained for periods > 3 months after return to control culture medium. Acute application of femtomolar dynorphin, as well as nanomolar naloxone, to the treated neurons after months in control medium evoked characteristic prolongation of the action potential duration (APD), as occurs in cells tested during or shortly after chronic opioid exposure. The threshold concentrations for eliciting these excitatory effects in naive DRG neurons are > 1000-fold higher. Furthermore, treatment of micromolar morphine-sensitized neurons with 1 nM etorphine (which is a potent excitatory opioid receptor antagonist) for I week prior to return to control medium blocked further expression of opioid excitatory supersensitivity when tested after an additional 1-7 weeks in culture. These results provide a unique in vitro model system for analyses of some of the cellular mechanisms underlying protracted opioid dependence in vivo.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Morfina/farmacología , Naloxona/farmacología , Narcóticos , Neuronas/efectos de los fármacos , Trastornos Relacionados con Sustancias , Animales , Medios de Cultivo , Etorfina/farmacología , Ganglios Espinales/citología , Ratones , Ratones Endogámicos , Antagonistas de Narcóticos/farmacología , Narcóticos/farmacología , Valores de Referencia , Factores de Tiempo
17.
Brain Res ; 673(1): 30-8, 1995 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-7757476

RESUMEN

We recently showed that the opioid alkaloids, etorphine, dihydroetorphine and diprenorphine, have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse sensory dorsal root ganglion (DRG) neurons. Pretreatment of naive nociceptive types of neurons with pM concentrations of these antagonists blocks excitatory prolongation of the calcium-dependent component of the action potential duration (APD) elicited by pM-nM morphine or other bimodally acting mu, delta and kappa opioid agonists and unmasks inhibitory APD shortening which usually requires much higher (ca. microM) concentrations. The present study demonstrates that pM concentrations of [des-Tyr1] fragments of dynorphin and beta-endorphin, as well as beta-endorphin-(1-27), can also selectively block excitatory opioid receptor functions in DRG neurons and unmask potent inhibitory effects of low concentrations of bimodally acting mu, delta and kappa opioid peptides and alkaloid agonists. These N- or C-terminus modified dynorphin or beta-endorphin peptides can be readily formed in neurons by specific peptidase activities. Since sustained activation of excitatory opioid receptor functions is essential for the development of tolerance/dependence in chronic morphine-treated DRG neurons in culture, the present in vitro study may help to account for the unexplained efficacy of [des-Tyr1] dynorphin fragments, as well as the endogenous opioids dynorphin A and beta-endorphin, in suppressing development and expression of naloxone-precipitated withdrawal and morphine tolerance in vivo.


Asunto(s)
Dinorfinas/farmacología , Ganglios Espinales/efectos de los fármacos , Receptores Opioides delta/efectos de los fármacos , betaendorfina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Dinorfinas/química , Encefalina Ala(2)-MeFe(4)-Gli(5) , Encefalina D-Penicilamina (2,5) , Encefalinas/farmacología , Ganglios Espinales/citología , Ratones , Morfina/farmacología , Neuronas/efectos de los fármacos , Receptores Opioides delta/agonistas , betaendorfina/química
20.
J Neurosci ; 14(9): 5570-9, 1994 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8083754

RESUMEN

Application of low concentrations (pM-nM) of NGF to mouse dorsal root ganglion (DRG)-spinal cord explants in long-term organotypic cultures rapidly prolongs the duration of the Ca(2+)-dependent component of the action potential (APD) in a major subset of DRG neurons that were previously shown to have characteristic responsiveness to exogenous opioids. These NGF-elicited excitatory modulating effects are blocked by pretreatment of the DRG neurons with monoclonal antibodies to rodent NGF receptors. NGF-induced APD prolongation is also prevented by the opioid receptor antagonist naloxone and the specific kappa-opioid antagonist nor-binaltorphimine (but not by specific mu- and delta-opioid antagonists). The results suggest that NGF stimulates the release of endogenous opioids (e.g., dynorphin) from DRG neurons and that prolongation of the APD occurs secondarily by activation of excitatory kappa-opioid receptor functions on these same or nearby cells. NGF-induced release of small quantities of opioids by DRG neurons would be expected to prolong the APD in view of the remarkable sensitivity of these neurons to the excitatory effects of extremely low (fM-nM) concentrations of exogenous opioid agonists. NGF-induced APD prolongation is blocked by the same cholera toxin A or B subunit treatments previously shown to block Gs coupling and GM1 ganglioside regulation of excitatory opioid receptors, respectively. These in vitro studies suggest that excitatory opioid receptor-mediated functions may play a role in mediating some types of rapid NGF-induced hyperalgesic and other physiologic effects on the nervous system.


Asunto(s)
Ganglios Sensoriales/fisiología , Factores de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Receptores Opioides kappa/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Carbazoles/farmacología , Células Cultivadas , Senescencia Celular , Toxina del Cólera/clasificación , Toxina del Cólera/farmacología , Gangliósido G(M1)/farmacología , Ganglios Sensoriales/citología , Alcaloides Indólicos , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Tiempo de Reacción/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...